Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.6.12Keywords:
Internet of Things, Load Balancing, SDN-IoT, QoS, Software Defined Networking, Proximal Policy OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The growth of Internet of Things devices and their uses have introduced ample challenges in handling dynamic and heterogeneous traffic patterns. This also has affected the area of Software Defined Networking (SDN). The key parameters like scalability, latency and resilience are the concerns in centralized SDN approach, especially in the case of large-scale IoT deployments. This research introduces a new method, Distributed SDN Control for IoT networks: A Federated Meta Reinforcement Learning Solution for Load Balancing. This method combines Federated Learning (FL) with the key features of Meta Reinforcement Learning (Meta-RL) to enable intelligent and privacy preserving load balancing across distributed SDN controllers. The system functions in two phases. In the first phase, traffic distribution models across are trained with FL without sharing raw data. Security is added to this by differential privacy and Byzantineresilient aggregation. In the second phase, fast adaptation to non-stationary traffic patterns is achieved using Meta-Learning and Proximal Policy Optimization (PPO). The performance evaluations show that theAbstract
How to Cite
Downloads
Similar Articles
- Jayendra K. Singh, Gyan P. Singh, Sanjay K. Singh, Son preference and children sex composition in Uttar Pradesh: An empirical analysis , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Syam Sundar. S, Direct reuse of scour and bleach effluent water for cotton knitted fabrics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kowsalya Ramasamy, Thiyagarajan Krishnan, Performance analysis of RF substrate materials in ISM band antenna applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Roop Kanwal, Children’s literature as a tool for social change: Teaching values and social awareness , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

