Clustering of cancer text documents in the medical field using machine learning heuristics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.06Keywords:
Machine learning, soft computing paradigm, cancer text documents, redundancy reductionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The data clustering over medical text documents plays a major role in extracting relevant information from the documents. However, most of the methods fails in finding the accurate solution on finding the relevant cancer type due to the presence of redundant data items. It is hence necessary to develop a clustering framework that strictly eliminates the redundant data items. In this paper, we present a clustering framework that tends to accurately cluster the cancer text documents to predict what type of cancer is present in a patient. A large database is tested and clustering using the machine learning model. The clustering framework consists of pre-processing the text documents, feature extraction, feature selection and clustering. The clustering using multi-support vector machine enables optimal clustering of text documents. The cancer datasets is used to validate the models over various medline cancer documents dataset. The experimental validation shows improved clustering of documents using the proposed models than other methods.Abstract
How to Cite
Downloads
Similar Articles
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Kumar, M. Santhanalakshmi , R. Navaneethakrishnan, Content addressable memory for energy efficient computing applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sharayu Mirasdar, Mangesh Bedekar, Knowledge graphs for NLP: A comprehensive analysis , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

