Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.06Keywords:
Neutrosophic fuzzy number, Python, Sustainability, Depletion, Substandard items, FabricationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study aims to develop a fuzzy inventory model for sustainable concurrent fabrication and material depletion model with randomly selected substandard items. An Economic Production Quantity (EPQ) model was developed using a single-valued neutrosophic number. Substandard items were modeled as random variables. To determine the optimal production strategy, the model was solved numerically using Python’s SciPy library to obtain the production quantity, amount of fabrication, capacity of vehicle, fabrication period, depletion period, preventive measures, duration of vehicle and the total cost. The models parameters were estimated using relevant historical data and industry reports. During the fabrication period the demand is uncertain a single-valued triangular neutrosophic number, Fb = (5,980, 6000, 6500); 0.98, 0.04, 0.03 is used to handle uncertain demand and defuzzification is used to demonstrate the crisp value of demand. A numerical example solved with Python shows a total cost of $235,271.60, offering important insights into the model’s economic implications.Abstract
How to Cite
Downloads
Similar Articles
- Arunachalaprabu G, Fathima Bibi K, A pattern-driven Huffman encoding and positional encoding for DNA compression , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Harsh Mineshbhai Shah, A literature-based analysis of studies in urban landscape concept , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K Sreenivasulu, Sameer Yadav, G Pushpalatha, R Sethumadhavan, Anup Ingle, Romala Vijaya, Investigating environmental sustainability applications using advanced monitoring systems , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Chandra, R. P. Singh, B. K. Prasad, Effect of Genotype and Explant on Shoot Regeneration in Brassica juncea , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- V. Mahalakshmi, M. Manimekalai, Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper

