Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.03Keywords:
COVID-19,Lung images, Feature selection, dataset, preprocess, classification, Neural Network, Machine Learning, Clustering, Performance, accuracyDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COVID-19 virus has emerged as a formidable global health challenge, significantly complicated by the continuous evolution of viral variants that modify the virus’s structural characteristics. Predicting disease affection in the lungs is complex and degrades the accuracy level of COVID-19 variants through imaging techniques, which remains a formidable challenge. The complexities involved in identifying these regions are exacerbated by issues such as image degradation, the high dimensionality of features, and scaling properties, all contributing to an increased rate of false positives. Consequently, this leads to decreased disease detection frequency, lower precision accuracy, and poor performance of traditional diagnostic methods, as reflected in reduced F1 scores and overall detection accuracy. To resolve this problem, enhanced Swarm intelligence-based optimal feature engineering with Hyperscale capsule net-convolution neural network (HC2NN) was used to identify the survey of COVID-19 affection accurately. The preliminary process takes place to preprocess the covid-variant dataset with the support of adaptive Gaussian with wavelet filters. Then, Iterative Intra Subset Object Scaling (I2SOS) is applied to identify the disease-affected region. Then, interrogative slice fragment clustering (ISFC) is used to segment the disease region. Throughout the disease region properties, the feature selection is applied with Swarm intelligence, and identification is carried out by HC2NN work to effectively find the disease margin. The proposed experiment results project higher precision accuracy in prediction rate as well as in increasing true positives rate to attain the best recall, sensitivity performance, and F1 score. The novelty proves to have a higher performance than the existing traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jyoti Vishwakarma, Sunil Kumar, Mapping Research on ESG Disclosure and Firm Performance: A Systematic Bibliometric Analysis , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Enhanced AOMDV-based multipath routing approach for mobile ad-hoc network using ETX and ant colony optimization , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper

