
Abstract
COVID-19 virus has emerged as a formidable global health challenge, significantly complicated by the continuous evolution of viral 
variants that modify the virus’s structural characteristics. Predicting disease affection in the lungs is complex and degrades the accuracy 
level of COVID-19 variants through imaging techniques, which remains a formidable challenge. The complexities involved in identifying 
these regions are exacerbated by issues such as image degradation, the high dimensionality of features, and scaling properties, all 
contributing to an increased rate of false positives. Consequently, this leads to decreased disease detection frequency, lower precision 
accuracy, and poor performance of traditional diagnostic methods, as reflected in reduced F1 scores and overall detection accuracy. To 
resolve this problem, enhanced Swarm intelligence-based optimal feature engineering with hyperscale capsule net-convolution neural 
network (HC2NN) was used to identify the survey of COVID-19 affection accurately. The preliminary process takes place to preprocess 
the covid-variant dataset with the support of adaptive Gaussian with wavelet filters. Then, iterative intra subset object scaling (I2SOS) is 
applied to identify the disease-affected region. Then, interrogative slice fragment clustering (ISFC) is used to segment the disease region. 
Throughout the disease region properties, the feature selection is applied with swarm intelligence, and identification is carried out by 
HC2NN work to effectively find the disease margin. The proposed experiment results project higher precision accuracy in prediction 
rate as well as in increasing true positives rate to attain the best recall, sensitivity performance, and F1 score. The novelty proves to have 
a higher performance than the existing traditional methods.
Keywords: COVID-19, Lung images, Feature selection, Dataset, Preprocess, Classification, Neural network, Machine learning, Clustering, 
Performance, Accuracy.
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Introduction
Lung diseases impact a considerable number of people 
worldwide. People can develop a variety of severe lung 
conditions, such as TB, pneumonia, asthma, and fibrosis, 
to mention a few, Haennah, J. H. J., Christopher, S., & King, 
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R. G. (2023). Coronavirus infections frequently start in the 
respiratory system, specifically the lungs. Early detection can 
improve the effectiveness of lung issues treatment. 

Since there is currently no cure or vaccine for the rare 
COVID-19 disease, early discovery is crucial to minimizing 
infection risks to the general population and enabling 
the prompt isolation of the suspected person. Chest 
radiography, sometimes referred to as X-ray or computed 
tomography (CT) images, is a simple and quick way to 
diagnose COVID-19 and pneumonia. 

During the early stages of COVID-19, a ground glass 
design is seen; be that as it may, it is difficult to spot this 
design near the pneumonic course borders. Topsy-turvy, 
sketchy, or broad aviation route opacities connected to 
COVID-19 have also been reported. It takes a team of highly 
trained radiologists to interpret changes in the body on such 
a small scale, (Mathesul, S., et al., 2023).

Medical imaging has drawn more attention to the 
computed-aided analysis of pulmonary diseases as deep-
learning techniques have become more popular. Computed 
tomography (CT) scans can now be automatically analyzed 
to identify cancerous lesions. In turn, radiographic analysis 
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Figure 1: Introduction diagram

has shown good results in detecting various cardiothoracic 
anomalies and symptoms of tuberculosis.

A practical method for examining lung tissues, 
determining the stages of lung cancer, and categorizing 
these phases is visual image analysis. It is challenging 
to group it according to stages, though. However, lung 
cancer can be effectively classified using sophisticated 
deep-learning techniques. Figure 1 clearly illustrates the 
development of lung cancer and divides it into phases. Deep 
learning algorithms are used to distinguish and classify the 
various forms of lung cancer. The first stage in diagnosing 
and treating lung cancer is detecting the disease in the lung 
tissue, which is the most crucial and efficient procedure.

Lung cancer classif ication using deep learning 
techniques, with a particular emphasis on the most often 
used approach, the hyperscale capsulenet-convolution 
neural network (HC2NN). Its multi-layer construction, 
automatic weight learning, and ability to communicate local 
weights allow it to reach the highest precision. Deep learning 
models, algorithms, and techniques are crucial for improving 
accuracy and lowering errors in the categorization of lung 
cancer. 

In many ways, automatic segmentation based on deep 
learning is superior to manual segmentation, Liu, S., & Yao, 
W. (2022). Deep learning produces high-quality images, 
lowers error rates, prevents misclassification, and correctly 
diagnoses cancer. Several classifiers are used to filter away 
false-positive nodules, Jiang, H., Ma, H., Qian, W., et al. (2017). 
The radiologist’s ability to make a prompt and precise 
diagnosis is directly correlated with the quality and accuracy 
of the images. Additionally, deep learning techniques are 
used to forecast lung cancer. Features are automatically 
derived from training photos, Jiang, W., Zeng, G., Wang, S., 
et al. (2022).
Deep learning’s HD representation of the input data helps 
the radiologist expedite the detection and identification 

process. Pixel bases are used to distinguish between 
cancerous and non-cancerous regions, so the pixels in the 
image help detect cancer right away. Therefore, by assisting 
physicians in the diagnosis and categorization of illnesses, 
deep learning benefits the healthcare system. It makes it 
easier to make accurate decisions about disease, Kumar, V., 
& Bakariya, B. (2021).
•	 Preprocessing removes noise and null values, and the 

Swarm intelligence and identification method is used 
to find the disease’s associated features.

•	 The marginal rate data is used to select the best features 
of the disease based on the class labels.

•	 The hyperscale capsule net- convolution neural network 
method is used to classify the patient’s lung disease 
affection.

Literature Review
Early identification is essential for respiratory infections 
to increase the effectiveness of therapies. To propose 
a lightweight network that uses lung noise to classify 
respiratory diseases, Banerjee, N., & Das, S. (2021). The LS 
signal’s modes are examined using the empirical wavelet 
transform. The time-domain and frequency-domain 
characteristics of each mode have been obtained. Machine 
learning algorithms have been selected to automatically 
detect PDs based on the properties of LS signals, Roy, A., & 
Satija, U. (2023).

Physicians can use breathing sounds to diagnose a 
variety of respiratory system issues. Abnormal lung sounds, 
which have been clinically associated with disorders 
such as bronchitis and chronic obstructive pulmonary 
disease, are commonly associated with chronic respiratory 
diseases worldwide, Tripathy, R. K., Dash, S., Rath, A., 
Panda, G., & Pachori, R. B. (2022). Using respiratory sound 
recordings, diseases can be identified, and respiratory cycle 
abnormalities can be categorized. The system starts by 
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transforming input sound into a spectrogram representation 
using front-end feature extraction, Wu, C., Ye, N., & Jiang, 
J. (2024).

The utilization of deep learning strategies in clinical 
imaging on enormous datasets has permitted PC calculations 
to create as powerful outcomes as clinical experts. To help 
specialists, it is fundamental to have a flexible framework 
that can conveniently distinguish different illnesses in the 
lungs with high exactness. Over the long run, although 
numerous classifiers and calculations have been carried 
out, profound learning models (i.e., CNN, Profound CNN, 
and R-CNN) are known to offer improved results, Pham, L., 
Phan, H., Palaniappan, R., Mertins, A., & McLoughlin, I. (2021). 
Existing methodologies for examining respiratory sounds 
need space-trained professionals. This way, an exact and 
computerized lung sound grouping apparatus is required. 
In this paper, I have fostered a programmed demonstrative 
framework to characterize these signs. It can uphold medical 
care frameworks in low-asset conditions with restricted 
assets and a deficiency of qualified clinical experts, Irtaza, 
M., Ali, A., Gulzar, M., & Wali, A. (2024).

Computer-aided diagnostic (CAD) frameworks help 
radiologists make more accurate conclusions with less 
significant financial outlay by processing and presenting 
little data meaningfully. The goal of this research project 
is to propose a CNN and MHCNN-based framework for 
pneumonic illness identification based on CXR images that 
are better, more accurate, and more effective, Babu, N., 
Pruthviraja, D., & Mathew, J. (2024). One of the most deadly 
respiratory conditions is chronic obstructive pulmonary 
disease (COPD).

It can be assessed using various clinical methods, including 
spirometric measurements, lung capacity tests, parametric 
reaction planning, wheezing episodes of lung sounds (LSs), 
and so on. Because LSs are associated with respiratory 
anomalies caused by aspiratory diseases, checking them is 
more effective for detecting respiratory problems, Zaidi, S. 
Z. Y., Akram, M. U., Jameel, A., & Alghamdi, N. S. (2021).

Early diagnosis is crucial for improving long-term survival 
rates and facilitating quicker recovery. Using deep learning 
techniques, lung disorders may be automatically, quickly, and 
accurately diagnosed from medical photos. Convolutional 
neural networks, particularly, have demonstrated promising 
results in diagnosing illnesses. However, the success of these 
supervised models depends heavily on the availability of 
a lot of labeled data, which can be expensive and time-
consuming to collect, especially for new diseases, Roy, A., 
Thakur, A., & Satija, U. (2023).

The accuracy of the current approaches on the two 
mentioned aspects is limited. This paper introduces 
algorithms for survival analysis and cancer subtype 
categorization using a multi-model deep learning 
framework. The platform includes two deep-learning 
pipelines for survival analysis and lung cancer type 
identification, respectively. An improved convolutional 
neural network (CNN) and multi-head CNN (MHCNN) model 
called LCSCNet is suggested to identify lung cancer subtypes 
automatically, Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. 
B., Yildirim, O., & Acharya, U. R. (2020).

The accuracy of the current approaches on the two 
aforementioned aspects is limited. This paper introduces 
algorithms for survival analysis and cancer subtype 

Table 1: Existing survey for lung disease detection using deep learning

References Proposed method Drawbacks Results

Yadav, P., Menon, N., Ravi, V., & 
Vishvanathan, S. (2023).

CXR deep neural Network (CXR-
Net)

 Unsuitable for diagnostic 
purposes.

Accuracy-0.95%
Sensitivity-0.93%

Zhang, X., et al. (2023). Refined Attention Pyramid 
Network (RAPNet)

manually identified Pre-0.96%
Rec-0.96.05%
F1-0.98%

Vinta, S. R., Lakshmi, B., Safali, M. A., & 
Kumar, G. S. C. (2024).

CNN, R-CNN Low accuracy Recall-57%
Accuracy-93.6%

Yu, H., Zhou, Z., & Wang, Q. (2020). CNN-MoE Cannot detect disease Pre-0.98%
Re-0.98.05%
F1-0.94%

Ozdemir, O., Russell, R. L., & Berlin, A. A. 
(2020).

Residual Deep Neural Network 
(ResNet)

Not effective for identifying 
respiratory issues.

Accuracy-95.13%
Sensitivity-96.33%
Specificity-94.37%

Aharonu, M., & Ramasamy, L. (2024). Adaptive Hierarchical Heuristic 
Mathematical Model (AHHMM)

earlier stage is challenging to 
predict

Accuracy-96.67%

Chetupalli, S. R., Krishnan, P., Sharma, N., 
Muguli, A., Kumar, R., Nanda, V., Pinto, L. M., 
Ghosh, P. K., & Ganapathy, S. (2023).

CNN High risk Accuracy-97.67%
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categorization using a multi-model deep learning 
framework. The platform includes two deep-learning 
pipelines for survival analysis and lung cancer type 
identification, respectively. An improved convolutional 
neural network (CNN) and MHCNN model called LCSCNet 
is suggested to identify lung cancer subtypes automatically, 
Sanghvi, H. A., Patel, R. H., Agarwal, A., Gupta, S., Sawhney, 
V., & Pandya, A. S. (2023).

The model utilized a Long Short-Term Memory (LSTM) 
network classifier to encode time-frequency features and 
health symptoms, Bohmrah, M. K., & Kaur, H. (2021). Recent 
research has applied machine learning models like Naïve 
Bayes and SVM for predicting bipolar disorder cases.  Studies 
highlight that deep learning methods enhance accuracy 
in mental health diagnosis, Peerbasha, S., Mohamed 
Surputheen, M. (2021).

However, collecting, evaluating, and analyzing 
vast quantities of health-related data—like images—is 
challenging and time-consuming for medical professionals. 
Lung cancer is among the many infectious and malignant 
diseases that artificial intelligence tools, such as machine 
and deep learning systems, help detect early,C. Wu, N. Ye 
and J. Jiang (2024).

A fine-tuned DensNet-201 model is proposed for the 
classification of chest X-ray images, Sanghvi, H. A., Patel, R. H., 
Agarwal, A., Gupta, S., Sawhney, V., & Pandya, A. S. (2023). The 
software uploads and analyzes chest X-ray images utilizing 
an enhanced detection model. Radiologists then receive 
disease classifications via DenseNet-201, allowing them to 
compare similar radiographs for verification, Bohmrah, M. 
K., & Kaur, H. (2021).

Problem Statement
When the size of the training set increases, existing 
algorithms render training algorithms inefficient. Many 
settings must be set precisely to get the best outcomes.

•	 It has a better solution for predicting Lung disease 
complications but has lower accuracy.

•	 It optimizes cancer prediction during the reduced test 
specificity and reduces the positive rates.

•	 Estimating effective cancer mortality risk from Lung 
disease-related genomic data is a major Challenge.

•	 Image identification accuracy values do not indicate 
feature relationships or classification mistakes.

Materials and Method
The most recent findings on deep learning-based lung 
image screening image for COVID-19 disease prediction 
will be presented. Image Processing consists of Covid lung 
disease segmentation, detection, classification, and image 
preprocessing. HC2NN classifier uses particular subset 
metrics to optimize feature selection. Its contribution is 
in combining subset features to increase classification 
accuracy. Categories are class labels, and feature selection 
is utilized in this section to identify data points depending 
on feature selection. It aims to increase the accuracy of 
lung disease predictive categorization. The level of error 
analysis and data time complexity are used to determine the 
prediction rate to improve prediction accuracy and recall.

Initially, I collected the images from the standard 
repository and started the preprocessing stage to reduce 
the Noise ratio and unbalancing values; the second step 
is segmenting the images to identify the affected Region 
based on interrogative slice fragment clustering (ISFC) and 
iterative intra subset object scaling (I2SOS). The feature 
remains to convey features with marginal weight based on 
swarm intelligence. The HC2NN classifier categorizes lung 
disease features in Figure 2. 

Image Dataset Collection
This data collection on common lung disorders, COVID-19, 
and other lung conditions is released in phases, as illustrated 

Figure 2: Proposed diagram
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in Figure 3. 217 Covid-19, 1,340 conventional, and 1,344 viral 
pneumonia chest X-ray (CXR) images are included in the 
initial distribution. In this initial release, 1,201 CXR images 
were added to the COVID-19 category. This second database 
update includes 1,345 lung masks associated with viral 
pneumonia images, 6,012 non-COVID-19 lung opacities, 
10,192 standard cases, and 3,616 COVID-19 positive cases. 
As additional Covid-19 pneumonia patient scans become 
available, this database will be updated.

Image Preprocessing
Preprocessing lung CT scans enhances their quality and 
improves lung nodule diagnosis outcomes. Improving 
the image is crucial since the lung has numerous features 
that could be mistaken for tumors.Datasets on Lungs were 
gathered using imaging screening records and at varying 
fitness levels. Adaptive Gaussian with wavelet filters uses the 
identified list of features to confirm that all of the elements 
in the list of features have attributes and values. A lung 
disease identification and analysis process will eliminate 
missing or partial drops.

The Gaussian filter minimizes group latency in this 
manner. In terms of mathematics, a Gaussian filter connects 
and applies a Gaussian function to the input signal. Gaussian 
filters are the prevalent smoothing technique. The next 
logical step is wavelet analysis, a windowing method that 
uses zones of different sizes, as shown in Figure 4. When 
more accurate low frequencies are needed, frequency 
analysis enables you to use longer time intervals.

The Gaussian filter (multi-view medical imaging) is 
created using the input images. Using a 5 x 5 2D separable 
Gaussian filter 𝜔(𝑚×𝑛)ω(m×n), the source images are 
convolved to produce 𝑃𝑙Pl from bottom to top via 
downsampling. l stands for the current layer, G_z for the 
Gaussian, and 𝑊 for the current number of rows in the l-th 
layer.
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End
An image preprocessing distance R(m,n) from the approach 
places the image change component of the matrix image, 
while the response and Gaussian filter analysis are centered 
on the σ runs. Using the first stage of the preparation 
procedure, the processes remove null reduction from the 
dataset and reduce image noise.

Segmentation using Interrogative Slice Fragment 
Clustering (ISFC)
A slice fragment is used to process the image on which noise 
sources have had an impact. First, the non-causal Region 
will be used to calculate the pixel and non-causal linear 
prediction error. Segmenting pixels using cluster in slicing 
fragment. In order for pixels to cluster with their neighbors, 
it is crucial to take into account the spatial relationships 
between them. For every pixel, pixel proximity is chosen 
in the same manner. The data’s visible structure. A pixel’s 
proximity is determined by considering how similar its 
spectrum is to that of nearby pixels.

Segment region (Sr) S(5 × 5) = Img(x, y) , i− 2 ≤ x≤ i+ 2, j− 2 ≤ y 
≤ j+ 2

Region of pixel maxi.point = inside the processing region 
of images.

I(x, y) = [Img(u, v)R, I(x, y)B]
Were x, y, and the lung screening image should 

have non-gradient pixels in every pixel. Pixels and their 
environment are closely related. The technique determines 
the present pixel value by combining the neighboring noisy 
and clear pixels in a weighted linear manner.
Figure 5 defines clustering segmentation as recognizing 
irregular areas in lung images and categorizing cancer 
according to their features.
Each lung objects mentioned f(x, y),

Figure 3: Dataset collection

Figure 4: Gaussian Wavelet filter process
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The segmentation algorithm combines background and 
temporal subtraction to segment moving objects and uses 
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to the fragment images.

xy
xy

x y

R
P

R R
=

xy
xyR

n
∑

=

22
,x x

yxR RN N
∑∑= =

Where, xP yx (where, a=x, b=y) X={a}, Y={b}, Each node 
calculated for each pixel of the borders. xy

x y

R
R R

-is the standard 
deviation of image values in a pixel.

Iterative Intra Subset Object Scaling (I2SOS)
Iterative Intrasubset Object Scaling (I2SOS) is a simple, fast-

integrating, and extremely dependable technique. This 
method’s primary benefit is its simultaneous extraction of 
texture feature categorization and lung screening image 
information. 

Compute the properties of a scaling-image-based 
system for recognizing lung clusters. Lung images are 
transformed into lung screening image textures. In the 
photographs balancing the separate lung screening image 
elements, each image identifies the characteristics and 
optimizes the image feature weights. 

Each image is represented using the in-depth learning 
approach, which regulates each aspect to the weight of 
training models described by the current weak textured 
image once the weight has been correctly categorized for 
using the scaling objects.

To determine the object scaling of the covered pixel 
scaling region p(s), the highly scattered image approaches 
the point where it gains the probability index 

The image’s brightness with a greater mean rate When 
the lung image feature is chosen, the general brightness is 
obtained by using the low dissimilar ‘L’ in the grey range from 
0 to 1 at the standard point to calculate the mean weight.
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The low-brightness pixels were separated from the rows and 
columns of the pixel image, which had a constant equation 
variance. As a result, the object scaling levels, which are 
represented as a square root variation of the total number 
of pixels, were improved. 
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For every object value, linked pixels provide the coordinated 
mean and the inverse average point of the expected 
standard deviation rate. 

Swarm Intelligence Using Feature Selection
In Swarm Intelligence feature selection, particles are 
represented as n-bit strings, where n is the dataset’s total 
number of features. The dth feature will be chosen, indicated 
by the position value of the dth dimension, or xid, which is 
[0,1]. To determine whether to choose features, a threshold x 
is applied. Choose the dth feature if xid > θ. The dth feature 
won’t be selected differently.

Static weights in the range [0.8, 1.2] use constant values 
to optimize the algorithm. To improve PSO’s optimization 
ability, it is recommended that the static weights be 
randomly selected.( )  ()0.5

2
randomfeaturevalueWeight w = +

At the beginning of the PSO process, a high global search 

Figure 5: Segmentation using clustering
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efficiency enables new domains to be discovered. 
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maxIteration  Is the maximum number of iterations, and t  is 
the current iterations of the algorithm.

The balance between global and local exploration 
determines the outcome of an optimization algorithm. The 
inertia weight 𝑤 is a vital parameter set to an appropriate 
value to balance global and local utility. High 
values ​​of 𝑤 encourage global exploration; low 
values ​​promote local development in B𝑖 (𝑡+1),

The provided feature selection technique 
considers features as a graph model, calculates 
centralities for all nodes, and uses a swarm-based 
search process to select the final set of features.

	 ( ) ( )max max minw x w w w= − +

( )ax is decreased linearly from mw ax at the early iterations 
to w in at the later. The behavior of these features.

	
( ) ( )2 4 6

cos
2 2

min max min max
t

x aw w w ww x w
T

π  ++ − = = +  
        ( ) ( ) 10

10logmax max in
xw x w w w X a

T
 = + − + 
 

A single parameter in swarm intelligence controls this 
balanced weight (w). Even with fewer than half of the 
functionalities, the network can function effectively. 
Memory is a hidden state. The network advances it based on 
the inputs that are provided. The input and the previously 
hidden state value are the two variables used to calculate the 
new hidden state if you follow the arrow toward the hidden 
state value. U, V, and W denote different layer parameters. 
Although these parameters differ between layers, each layer 
utilizes the same values.

	 ( )x xy a xy a xS w x w y Bσ= + +
	

X xy a Yy w x B= +
The σ function in the formula above represents nonlinearity, 
b is a bias form, and 𝑤 is a weight matrix. Weight matrices 
come in a variety of forms, and each one has a unique 
explanation. The input value an is mapped to the hidden 
state value x via 𝑤𝑥𝑠. Along the time axis, the 𝑤𝑠𝑠 converts 
the value of the hidden state 𝑠 to another hidden state value. 
For example, 𝑤𝑠𝑦 transfers the hidden state value to an 
output value 𝑦 between x1 and x2. Additionally, there are 
constant biases, which are represented by the symbols 𝑏𝑠 
for the concealed state and 𝑏𝑦 for the output, respectively. 
This bias vector can vertically shift any value going through 
the activation function.

Classification using Hyper scale Capsulenet- 
Convolution Neural Network (HC2NN)
The lung images are scaled variably according to hyper-scale 
dependencies, which results in variations in the feature 
threshold limits and dense features. To determine the closer 
weights on each hidden dense layer, the neural network 
is processed repeatedly, and the margins are iterated. 
Hierarchical connection modeling can be improved with this 
method. CNN drastically reduces the network’s parameters 
by using repeated weights and biases across the whole layer. 
CNN applications through the use of specific topologies, like 
local connections and shared weights.

Pooling reduces the feature maps’ resolution, ensuring 
invariance. Neurones merge a little N × N (for example, N = 
2) segment of the convolution layer in the pooling layer. The 
most used pooling technique is max pooling.

Employed to train every parameter of the deep CNN 
model. CNN extracts features, which are subsequently sent 
into the deep capsule network for further processing.

Capsule Network (CN)
The capsule network modifies the conventional neural 
network, which employs a collection of neurons to learn the 
vector representations of a certain kind of item. 

The weighted sum of the prediction vector 𝑢𝑗|𝑖 from the 
preceding layers is the input to a capsule 𝑠𝑗. The previous 
capsule’s 𝑢𝑗 is multiplied by a transform matrix to create 
𝑢𝑗|𝑖. 𝑊𝑖𝑗

j|i
n

sj u cij=∑

Where 𝑐𝑖𝑗 stands for the coupling coefficients that are 
established by a method known as dynamic routing, after 
determining the entity’s probability based on the output 
vector’s length, the capsule applies a nonlinear function 
known as the squash function to squash the vector.

In addition to providing the entity’s orientation, the 
vector representation employs the activity vector’s length 
to determine the entity’s probability. The pooling layer, 
which is used in conventional CNNs to maintain the network 
insensitive to tiny input changes, is restricted. 

CNNs typically perform worse in classification because 
they are less resistant to translation, rotation, and scale. The 
output of a capsule network is a vector representation of a 
certain kind of entity. The length of the capsule’s associated 
output vector might not alter much when the entity is 
changed. Utilizing the capsule network can get a more 
reliable representation of the input. 
CNN is built using dense points and an integrated activation 
function for logical decisions.
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( )1 1t x t h t c t ii s w x w h w c b− −= + + +  and

( )1 1t fx t hf t cf t ff s w x w h w c b− −= + + +

( ) ( ) ( ) ( )1 1 1 1
1t t xh t hh hh x w h w b−= + +

( ) ( ) ( ) ( )2 2 2 2
1t t h t hh hh x w h w b−= + +

The hidden layer activation is as follows.

( )( ) ( )( )( )1 2 / 2t t th mod h mod h= +

The output is given by 

t hy t yy w h b= +

hhw  as identity as in HC2NN,  ( ) ( ) ( ) ( )1 2 1 2
hh hh h hw andw b andb   set as zero.

Using threshold margins, this optimized recurrent neural 
network determines if a lung ailment is a high risk or low risk. 

Result and Discussions
The results of the proposed feature selection using HC2NN 
will be compared with the training features of the lung 
imaging dataset. At this point, memory and precision are 
assessed through performance reviews. The final error rate’s 
true/false condition is used to compute text case metrics.To 
analyze the competence of developed COVIDNet-Predictor, 
a comparative evaluation is carried out with baseline models 
such as CNN, MHCNN, and LSTM, DenseNet and Darknet. 
The performance measures including accuracy, specificity, 
recall, precision, and F1-score are employed to estimate the 
efficacy of proposed COVIDNet-Predictor

A lung imaging dataset is analyzed to evaluate the 
efficacy of the suggested approach. The number of test 
and train photos is used to evaluate texture detection for 
classification in lung images. 

Python implements the suggested COVID-19 detection 
method with the enhanced HC2NN model on an Intel Core 
i3 processor 7,020U@2.3GHz, with 8GB of RAM and a 64-bit 
operating system. Activation is done using lung CT scans. 
The suggested method classifies COVID-19 images by 
comparing the training and test profiles of the proposed 
ResNet 101 70:30 for testing purposes. Simulation findings 
demonstrate the effectiveness of the suggested COVID-19 
detection approach. Existing models such as CNN, RobNET, 
and RESTNET are used here.

This class is primarily responsible for the sharp increase 
and decrease because there were fewer COVID-19 instances 
than in the other two classes (Yes and No). By analyzing every 
CT scan for every training epoch, these high and low points 
in the training can be reduced. 
•	 True negative (TN): An appropriately diagnosed normal 

lung image.

•	 True positive (TP): The case has been appropriately 
identified. 

•	 False negative (FN): A mistaken identification of the case.
•	  False positive (FP): An inaccurate diagnosis is made 

based on normal lung imaging. 

Evaluation Metrics
This class is primarily responsible for the sharp increase 
and decline because it had fewer COVID-19 cases than the 
other two (Yes and No). By evaluating every CT scan for each 
training cycle, these high and low moments in training can 
be decreased. 

Accuracy measures how well the model performs overall 
across all classes. The proportion of accurately predicted 
samples to all samples in the dataset determines how it is 
computed.

Figure 6 depicts the detection model’s performance via a 
confusion matrix. Contains information about the model’s 
strengths and flaws, including the number of True Positives 
(TP), False Positives (FP), True Negatives (TN), And False 
Negative (FN) predictions.

Experimental Results
For our investigation, we combined three publicly accessible 
chest X-ray datasets. Four labels were applied to the merged 
dataset: COVID-19, non-COVID-19, bacterial, and normal. We 
classified the labels as either positive or negative because 
our study’s primary goal is to identify positive COVID-19 
cases.

Using all of the data, a COVID-19 identification model 
based on HC2NN is then created. The collection’s chest X-ray 
images were all shrunk to a uniform 100x100 pixel size. The 
input layer, which represented 128 × 128 x 3 RGB images, 
is the first layer of the HC2NN model. Using pre-trained 
models, transfer learning is applied to the COVID-19 dataset. 

The tensor is converted to a vector using the compressed 
layer, and this vector is subsequently supplied to a fully 
interconnected neural network classifier. 

A dropout of 0.5 is utilized to keep away from overfitting. 
The model is additionally enhanced by the result layer 
utilizing the Adam Optimiser. Irregular inspecting is used 
to isolate the first dataset into preparing and testing 
datasets. To work on the information during preparation, the 
preparation images were arbitrarily interpreted, flipped, and 
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Figure 6: Confusion Matrix

Table 2: Performance of COVIDNet-Predictor and HC2NN over Other Baseline and Models

Methods Accuracy Recall Specificity Precision F1-score

CNN 93.45 92.4 93.21 91.21 92.14

DenseNet 94.14 90.98 94.68 93.6 93.84

Darknet 92.51 95.14 93.11 90.15 92.21

MHCNN 91.62 95.15 90.32 91.25 91.34

LSTM 92.41 93.22 91.01 90.01 90.18

COVIDNet-Predictor 95.04 97.78 96.91 97.85 95.88

HC2NN 97.9 97.74 97.02 98.02 96

pivoted. These qualities were experimentally obtained after 
each model was prepared for 50 ages with a group size of 32. 
Furthermore, the Adam streamlining agent’s learning rate is 
experimentally discovered. A confusion matrix developed 
by analyzing more than 2900 correct X-ray scans is used to 
assess the COVID-19 detection model’s performance.

Table 2 shows the performance of COVIDNet-Predictor 
over other baselines and models. The accuracy of the 
developed COVIDNet-Predictor and HC2NN techniques is 
high, at 95.04% and 97.9%, respectively, compared with 
existing models, which are 97.74%, 97.02%, 98.02%, 98.02%, 
and 96% better than CNN, DenseNet, Darknet, MHCNN, and 
LSTM, respectively. As for recall, precision, and F1-score, 
the proposed model attained better performance and 
outperformed other models.

Figure 7 shows the actual positive accuracy precision 
values when contrasting the various methods. Compared to 
other algorithms, the suggested implementation performs 
better. The proposed method, HC2NN, has a higher precision 
of 98.02% than the standard approaches, which have a 
CNN of 91.21%, a DenseNet of 93.6%, a DarkNet of 90.15%, 
a MHCNN of a 91.25%, LSTM of 90.01%, and a COVIDNet 
predictor of 97.85%.
Figure 8 shows recall performance data for True Positive 
Recall Accuracy. The recommended implementation 

Figure 7: Precision performance

performs better than other algorithms when comparing 
the various methods. CNN of 92.4%, a DenseNet of 90.98%, 
a DarkNet of 95.14%, a MHCNN of a 95.15%, LSTM of 
93.22%, and a COVIDNet predictor of 97.78%in the current 
approaches, while HC2NN, the suggested method, has an 
accuracy of 97.94%, which is higher than previous methods.

Figure 9 shows detection accuracy performance 
for comparing various approaches; the suggested 
implementation performs superior to other methods. The 
existing approaches have a CNN of 93.45%, a DenseNet of 
94.14%, a DarkNet of 92.51%, a MHCNN of a 91.62%, LSTM 
of 92.41%, and a COVIDNet predictor of 95.0%. However, 
the proposed method, HC2NN, has a higher 97.9% accuracy 
than earlier methods.

Figure 10 shows detection specificity performance 
for comparing various approaches; the suggested 
implementation performs superior to other methods. The 
recommended implementation performs better than other 
algorithms when comparing the various methods. The CNN 
of 93.21%, a DenseNet of 94.68%, a DarkNet of 93.11%, a 
MHCNN of a 90.32%, LSTM of 91.01%, and a COVIDNet 
predictor of 96.91% in the current approaches, while HC2NN, 
the suggested method, has an accuracy of 97.02%, which is 
higher than previous methods
Figure 11 displays false rate statistics when comparing 
various methods; the suggested solution performs better 
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in terms of mistake rate than alternative algorithms. The 
proposed HC2NN yields 96% fewer inaccurate results than 
the current system for CNN of 92.14%, a DenseNet of 93.84%, 
a DarkNet of 92.21%, a MHCNN of a 91.14%, LSTM of 90.18%, 
and a COVIDNet predictor of 95.88%.

Figures 12and 13 represents the validation loss and 
accuracy plot of the proposed COVIDNet-Predicitor and 
HC2NN. Validation accuracy typically increases as the model 
learns from the data, indicating improved performance 
over time.

The definition of Figures 14 is that when it came to 
binary classification of either normal chest X-ray images 
or COVID-19, the HC2NN model—which is trained using 
full X-ray images—performed the best. It has an F1 score 
of 0.9505, precision of 0.95, sensitivity of 0.96, specificity 
of 0.94, and accuracy of 0.9412. The best implementation 
models’ training and testing ROC curves, confusion matrices, 
training and validation accuracy of 0.9605, and training and 
validation loss of 91.6.	

Discussion
Experimental results show that a deep learning-based 
COVID-19 identification algorithm has been effectively 
built using chest X-ray images. The model’s good precision, 
accuracy, recall, and F-measure evaluations showed that it 
could differentiate between positive and negative COVID-19 
cases. Diversifying the training data using several publicly 
available datasets produces a more potent and broadly 
applicable model.
Concerns regarding the possible long-term consequences 
of ionizing radiation, particularly on youngsters, are the 
main reason for using X-ray scans rather than CT scans. 
Due to their accessibility and affordability, X-ray scans are 
a potential option for thorough COVID-19 screening and 
diagnosis.

Relevant features were effectively retrieved from X-ray 
images using a CNN design that incorporated convolutional 
layers, pooling layers, and the ReLU activation function—
transfer learning, which significantly enhanced model 
performance by using pre-trained weights from relevant 
datasets. 

Our COVID-19 detection model showed competitive 
results when compared to other state-of-the-art techniques, 
indicating its potential as a valuable weapon in the 
pandemic response. The model can help speed up the 
diagnosing process, aid in early detection, and help manage 
patients by giving radiologists a second view.

Furthermore, it is crucial to recognize the limited 
quantity and scope of the dataset, even if our work has 
shown promising results in differentiating between positive 
and negative cases in chest X-ray photographs using 
the currently available dataset. Creating a reliable binary 
classification model is our primary objective. It assesses and 
acknowledges the possible advantages of using external 

Figure 8: Recall performance

Figure 9: Analysis of Detection accuracy

Figure 10: Analysis of Specificity
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Figure 11: Analysis of F1 score

Figure 12: Training and validation accuracy

Figure 13: Training and validation loss

Conclusion
Effective treatment of lung cancer, a serious and occasionally 
fatal illness, depends on early detection. The importance 
of deep learning, more especially the application of 
Convolutional Neural Networks, is revolutionizing medical 
diagnosis. The basic HC2NN model has a lower level of 
precision because of overfitting in validation and training 
accuracy. However, deep learning approaches improve 
diagnosis efficacy and accuracy while reducing the workload 
of healthcare manual prediction. The model is enhanced 
via regularization, which raises training and validation 
accuracy by 5%. However, because the model has a minor 
overfit, an augmentation strategy is applied to improve 
accuracy, resulting in a 10% increase in accuracy and reduced 
overfitting.To detect lung cancer photographs, the authors 
created a deep learning-based application with an average 
validation loss of 91.6% and better training and validation 
accuracy of 0.9605. This technique for detecting lung cancer 
using CT scans is more adaptable and simple to utilize.
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