Graph neural networks for modeling ecological networks and food webs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.15Keywords:
Ecological networks, Graph Neural Networks (GNNs), Population dynamics, Trophic interactions, Spatial patterns, Biodiversity conservationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper investigates the application of Graph Neural Networks (GNNs) for modeling ecological networks and food webs. Using Python programming with libraries such as NumPy, Matplotlib, and NetworkX, random data generation is performed to simulate population sizes of different species within ecological networks. Various types of visualizations, including bar charts, line charts, and pie charts, are created to analyze population sizes, trends, and distribution of species. Additionally, NetworkX is employed to create graphical representations of ecological networks, including directed, spring layout, and circular layout graphs. These graphs illustrate trophic interactions, energy flow dynamics, and spatial organization of species categories within ecological networks. The study's methodology integrates data generation techniques with visualization tools to analyze and interpret ecological networks and food webs. The findings contribute to understanding ecosystem dynamics, trophic interactions, and biodiversity patterns, providing insights for ecological modeling and conservation efforts. Overall, this research explores the potential of GNNs in modeling and understanding complex ecological systems, offering valuable implications for ecosystem management and biodiversity conservation.Abstract
How to Cite
Downloads
Similar Articles
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

