Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.48Keywords:
Content-based image retrieval, Deep learning, Retrieval inception V3-NET algorithm, Enhanced deep belief networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the present scenario, Content-Based Image Retrieval (CBIR) performs a constantly changing function that makes use gain knowledge from images. Moreover, it is also the dynamic sector of research and was recently rewarded due to the drastic increase in the performance of digital images. To retrieve images from the massive dataset, experts utilize Content Based Image Retrieval. This approach automatically indexes and retrieves images depending upon the contents of the image, and the developing techniques for mining images are based on the CBIR systems. Based on the visual characteristics of the input image, object pattern, texture, color, shape, layout, and position classifications are applied, and indexing is carried out. When issues arise during feature extraction, deep learning approaches help to resolve them. A method called RIV3-NET, which stands for Retrieval-Based Inception V3, was used to classify the features. Classifying image invariant data using Enhanced Deep Belief Networks (EDBN) is necessary to decrease noise and improve displacement with smoothness. The simulation outcomes demonstrate the improved picture retrieval and parametric analysis.Abstract
How to Cite
Downloads
Similar Articles
- Sharada C, T N Ravi, S Panneer Arokiara, Lancaster sliced regressive keyword extraction based semantic analytics on social media documents , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Meera Yadav, F. D. Yadav, Effect of TLCV on Metabolic Parameter and Yield of Tomato , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

