Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.48Keywords:
Content-based image retrieval, Deep learning, Retrieval inception V3-NET algorithm, Enhanced deep belief networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the present scenario, Content-Based Image Retrieval (CBIR) performs a constantly changing function that makes use gain knowledge from images. Moreover, it is also the dynamic sector of research and was recently rewarded due to the drastic increase in the performance of digital images. To retrieve images from the massive dataset, experts utilize Content Based Image Retrieval. This approach automatically indexes and retrieves images depending upon the contents of the image, and the developing techniques for mining images are based on the CBIR systems. Based on the visual characteristics of the input image, object pattern, texture, color, shape, layout, and position classifications are applied, and indexing is carried out. When issues arise during feature extraction, deep learning approaches help to resolve them. A method called RIV3-NET, which stands for Retrieval-Based Inception V3, was used to classify the features. Classifying image invariant data using Enhanced Deep Belief Networks (EDBN) is necessary to decrease noise and improve displacement with smoothness. The simulation outcomes demonstrate the improved picture retrieval and parametric analysis.Abstract
How to Cite
Downloads
Similar Articles
- P. Rathinabhagya, J. Merline Vinotha, Fuzzy vehicle routing problem for a municipal solid waste management system with greenhouse gas emission at various disposal stages , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

