Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.48Keywords:
Content-based image retrieval, Deep learning, Retrieval inception V3-NET algorithm, Enhanced deep belief networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the present scenario, Content-Based Image Retrieval (CBIR) performs a constantly changing function that makes use gain knowledge from images. Moreover, it is also the dynamic sector of research and was recently rewarded due to the drastic increase in the performance of digital images. To retrieve images from the massive dataset, experts utilize Content Based Image Retrieval. This approach automatically indexes and retrieves images depending upon the contents of the image, and the developing techniques for mining images are based on the CBIR systems. Based on the visual characteristics of the input image, object pattern, texture, color, shape, layout, and position classifications are applied, and indexing is carried out. When issues arise during feature extraction, deep learning approaches help to resolve them. A method called RIV3-NET, which stands for Retrieval-Based Inception V3, was used to classify the features. Classifying image invariant data using Enhanced Deep Belief Networks (EDBN) is necessary to decrease noise and improve displacement with smoothness. The simulation outcomes demonstrate the improved picture retrieval and parametric analysis.Abstract
How to Cite
Downloads
Similar Articles
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Karthik Gangadhar, Prem Kumar N, Neuroprotective activity of alcoholic extract of Operculina turpethum roots in aluminum chloride-induced Alzheimer’s disease in rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

