Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.05Keywords:
Data Imputation, Hot-Deck Fusion, Hybrid Methods, Lagrange Polynomial Interpolation, Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Data imputation is vital in preserving the quality of datasets in machine learning, where missing data leads to decreased model accuracy. This research proposes a new imputation method called Lagrange Polynomial Interpolation with Hot-Deck Fusion (LPIHD) to enhance the quality and reliability of imputed datasets, mainly when the data is multifaceted and comprises multiple types. LPIHD combines Lagrange Polynomial Interpolation and Hot-Deck Fusion. Lagrange Polynomial Interpolation estimates missing values using known data points. Hot-Deck Fusion refines these estimates by borrowing similar values from a donor population. This hybrid approach applied to two distinct datasets about wine quality and heart diseases, enhances precision by achieving lower MAE and RMSE values than those previously recorded. LPIHD achieved better accuracy for the wine quality and heart disease datasets, respectively, at varying rates of missing data. MAE and RMSE were also notably reduced across both datasets, affirming the method's efficacy. These findings suggest that LPIHD can produce better and more accurate data imputations, making it a helpful technique for the field that needs a strong analytical platform.Abstract
How to Cite
Downloads
Similar Articles
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

