Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.05Keywords:
Data Imputation, Hot-Deck Fusion, Hybrid Methods, Lagrange Polynomial Interpolation, Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Data imputation is vital in preserving the quality of datasets in machine learning, where missing data leads to decreased model accuracy. This research proposes a new imputation method called Lagrange Polynomial Interpolation with Hot-Deck Fusion (LPIHD) to enhance the quality and reliability of imputed datasets, mainly when the data is multifaceted and comprises multiple types. LPIHD combines Lagrange Polynomial Interpolation and Hot-Deck Fusion. Lagrange Polynomial Interpolation estimates missing values using known data points. Hot-Deck Fusion refines these estimates by borrowing similar values from a donor population. This hybrid approach applied to two distinct datasets about wine quality and heart diseases, enhances precision by achieving lower MAE and RMSE values than those previously recorded. LPIHD achieved better accuracy for the wine quality and heart disease datasets, respectively, at varying rates of missing data. MAE and RMSE were also notably reduced across both datasets, affirming the method's efficacy. These findings suggest that LPIHD can produce better and more accurate data imputations, making it a helpful technique for the field that needs a strong analytical platform.Abstract
How to Cite
Downloads
Similar Articles
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

