
Abstract
Data imputation is vital in preserving the quality of datasets in machine learning, where missing data leads to decreased model accuracy. 
This research proposes a new imputation method called Lagrange Polynomial Interpolation with Hot-Deck Fusion (LPIHD) to enhance 
the quality and reliability of imputed datasets, mainly when the data is multifaceted and comprises multiple types. LPIHD combines 
Lagrange Polynomial Interpolation and Hot-Deck Fusion. Lagrange Polynomial Interpolation estimates missing values using known data 
points. Hot-Deck Fusion refines these estimates by borrowing similar values from a donor population. This hybrid approach, applied to 
two distinct datasets about wine quality and heart diseases, enhances precision by achieving lower MAE and RMSE values than those 
previously recorded. LPIHD achieved better accuracy for the wine quality and heart disease datasets, respectively, at varying rates of 
missing data. MAE and RMSE were also notably reduced across both datasets, affirming the method’s efficacy. These findings suggest 
that LPIHD can produce better and more accurate data imputations, making it a helpful technique for the field that needs a strong 
analytical platform.
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Introduction
The imputation of missing data is playing an important role 
in data science. and, more specifically, in machine learning 
because data plays a central role in learning the algorithm 
(Ahmad et al., 2024). Data can be missing due to one of 
the reasons, such as human mistakes, machine errors, or 
lack of data collection, and these types of inadequacies 
significantly threaten the study’s credibility (Albahri et al., 
2023). If these gaps are not eliminated, the models derived 
from such research may contain inherent bias or errors. It 
potentially leads to incorrect conclusions and subsequent 
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erroneous decisions. Therefore, imputation is not just a fix 
but an enrichment asset that strengthens statistics and 
artificial intelligence forecasts by creating approximations 
of missing values while maintaining the structure and 
connection of the data.

Also, data imputation methods have implications for the 
quality of the models used in predictive analytics (Shadbahr 
et al., 2023). Incomplete data can positively impact machine 
training since it creates overfitting or underfitting models 
when applied in the real world. By doing the imputation 
correctly, data scientists can preserve the data’s quality and 
guarantee that the models derived therefrom are precise 
and usable on other related tasks. It aids in optimizing 
the usage of current information within a business to 
enhance understanding made in giving out conclusions for 
pertinent analytics within the organization. The imputation 
techniques, therefore, stand as the foundation of high-
quality data analysis and enhancement of the reliable 
machine learning model that is crucial in various industries 
to date.

Problem Statement
Current data imputation methods could be more decisive in 
handling large datasets with non-linear and heterogeneous 
values. Other techniques like mean imputation or regression 
analysis might ensure that the complexity of data details is 
manageable while hindering the complexity of the linked 
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variables. This issue is even more so when analyzing datasets 
with a high level of heterogeneity, and the data types include 
nominal, ordinal, and interval levels of measurements. Such 
methods may bring a specific bias or mask variability that 
is initially present in data, which can result in reduced 
accuracy of analytics and even untruthful results in the field 
of predictive analytics. Therefore, it is growing important to 
develop sophisticated imputation mechanisms due to the 
increased complexity and heterogeneity of contemporary 
data sources while at the same time ensuring that the data 
analysis results are reliable and accurate.

Research Objectives
The primary objective of this research is to develop a 
hybrid imputation method that significantly enhances the 
accuracy and robustness of data handling, particularly in 
datasets plagued by missing values. This novel approach 
seeks to amalgamate the strengths of various imputation 
techniques to create a more reliable and efficient method 
for dealing with incomplete data across diverse scenarios. 
Key aims include:
•	 To integrate advanced mathematical models to improve 

the precision of imputed values, thereby increasing 
the overall accuracy of subsequent data analyses and 
machine learning models.

•	 To design the method to be resilient across various types 
of data, including categorical and ordinal, ensuring 
consistent performance regardless of the dataset’s 
complexity.

•	 To enable the imputation method to dynamically adjust 
to the specific characteristics of the dataset, such as the 
distribution of missing data and the presence of non-
linear relationships among features.

Related Works
Data imputation techniques in healthcare were examined, 
emphasizing challenges and ethical concerns related 
to complex health data. Both traditional and AI-driven 
methods were explored, demonstrating their effectiveness 
through real-world examples (Nayak & Khilar, 2024). 
Lagrange interpolation for volatile datasets was analyzed, 
with findings indicating that cubic interpolation was most 
effective, especially in IoT systems (Oktaviani, Abdurohman, 
& Erfianto, 2023). The Cyclical Tree-Based Hot Deck (CTBHD) 
method was introduced for complex survey data, enhancing 
stability and reducing bias through extensive customization 
and a cyclical approach (Sukasih & Scott, 2023). A new robust 
imputation algorithm, imputeRobust, was developed to 
improve the precision and reliability of large-scale data 
analyses by effectively managing outliers and missing data 
(Templ, 2023).

Various imputation methods within S&P 500 financial 
datasets were compared, with MissForest identified as 
superior in enhancing predictive accuracy (Zamri et al., 

2024). A probabilistic model for imputing data in employee 
datasets was presented, demonstrating high accuracy in 
diverse applications, from Kaggle competitions to real-
world settings (Arefin & Masum, 2024). A new approach to 
handling missing data in accelerometer-based studies was 
developed, using hot deck multiple imputation to achieve 
less bias and better confidence interval coverage (Butera et 
al., 2019). Imputation for small and structured datasets was 
enhanced with a neural network-based architecture that 
uses adversarial learning to estimate uncertainty, improving 
traditional imputation techniques (Hameed & Ali, 2022).

A survey of imputation techniques offered insights 
into their effectiveness and limitations for managing large 
datasets, guiding future studies in quantitative research 
(Hameed & Ali, 2023). Challenges of multivariate polynomial 
interpolation were tackled with the novel Random Lagrange 
Multivariate Polynomial Interpolation Algorithm (RLMVPIA), 
enhancing computational efficiency (Essanhaji & Errachid, 
2022). A multi-feature generation network for industrial 
time-series data was introduced, significantly improving 
data imputation accuracy (Zheng et al., 2023). Missing 
data imputation was improved by integrating high-order 
polynomial equations with CNNs, achieving superior 
accuracy on UCI datasets, and maintaining data integrity 
(Khan et al., 2024).

Methodology
Figure 1 illustrates the structured workflow of the Lagrange 
Polynomial Interpolation with Hot-Deck Fusion (LPIHD) 
methodology. The process begins with the raw input data, 
where missing values are identified across each feature. 
In Phase 1, Lagrange Polynomial Interpolation is applied 
to these identified missing points, leveraging observed 
neighboring values to estimate the missing data. Once these 
initial estimates are generated, the workflow transitions 
to Phase 2, where Hot-Deck Imputation is used for further 
refinement. This phase involves selecting similar donor 
records from the complete cases in the dataset to adjust 
or replace the estimates from Phase 1. The integration of 
results from both phases leads to the final imputed dataset, 
which is then analyzed using machine learning models 
such as Naive Bayes (NB) and Multi-Layer Perceptron (MLP) 
to validate the imputation’s effectiveness. This cohesive 
process ensures that the final dataset is robust and ready 
for advanced analytical applications.

This work introduced artificial missingness into the 
datasets to evaluate the performance of the imputation 
methods. This approach allowed for controlled experimental 
conditions to assess how well each imputation method 
recovers lost information. Missingness was induced at three 
different rates: 10%, 20%, and 30%, representing varying 
levels of data sparsity that might be encountered in real-
world scenarios.
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The process of creating artificial missingness involves 
randomly selecting a specified percentage of data points 
within the dataset and systematically removing their values. 
This is mathematically represented by the equation (1):

M(x) = 
( )

        

   1

NaN with probability p

x with probability p




−
		  (1)

where M(x) denotes the potentially missing data point, 
x is the original data value, NaN  represents a missing value 
and p is the probability of a data point being missing, set to 
0.1, 0.2,  0.3or  depending on the desired missingness level.

Example
Consider a small dataset for demonstration: [ ]4,8,15,16,23,42
. Applying a 20% artificial missingness rate, each data point 
has a 20% chance of being replaced with NaN. A possible 
outcome might be [ ]4, NaN,15,16,23,42 , indicating that the 
second position in the dataset was selected to be missing 
under the induced conditions.

Lagrange Polynomial Interpolation
Lagrange Polynomial Interpolation (LPI) is a classic 
mathematical method that estimates the values of a function 
at specific points by leveraging its known values at other 
points. This technique is particularly relevant in the realm 
of data imputation, where it facilitates the estimation of 
missing values through the utilization of known data points. 
The general interpolation formula is given in equation (2):

( ) ( )
0

k
j jj

P x y L x
=

=∑ 			   (2)

Where:

•	 ( )P x  is the polynomial that estimates missing values.

•	 jy  are the known data values.

•	 ( )jL x  are the Lagrange basis polynomials.

Each basis polynomial ( )jL x  is defined by the product 
as in the equation (3):

( ) 0     jL x m k m j= ∏ ≤ ≤ ≠  m

j m

x x
x x
−
−

		  (3)

This method is exceptionally effective in datasets where 
relationships between variables are non-linear, as the 
polynomial can flexibly fit a wide range of data patterns. The 
derivation of the Lagrange polynomial involves creating a 
series of basis polynomials, each corresponding to one of 
the known data points. These polynomials are designed 
such that each one equals 1 at its corresponding data point 
and 0 at all other data points included in the interpolation.

Consider a simple dataset with three known data 
points: ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2, 1, 2 , , 3,6 , , 4,8x y x y x y= = =
. To estimate the value of the function at x = 
2, the Lagrange interpolation formula would be 
applied as follows:

The basis polynomials would be computed using the 
equation (3):

	
( ) ( )( )
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Then, the Lagrange polynomial P(x) would be assembled 
by combining these basis polynomials with the known y 
values using the equation (2):

Figure 1: LPIHD Workflow
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Calculating P(2) results in:
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Lagrange Polynomial Interpolation’s strength lies in its 
ability to precisely model the intricate relationships inherent 
in real-world data. This capability makes it a valuable tool 
in fields such as climatology, economics and any other area 
where prediction models based on historical data are used. 
Its adaptability ensures that the interpolations are both 
accurate and practical for data-driven decision-making 
processes, thereby maintaining the integrity and reliability 
of statistical analyses and predictive modeling.

Hot-Deck Fusion
Hot-Deck Fusion (HDF) is a sophisticated method used 
in data imputation to handle missing values by drawing 
upon a pool of donors—records within the dataset that 
have complete data. Unlike other imputation techniques 
that rely on statistical or model-based assumptions, HDF 
utilizes actual data to ensure the imputed values are realistic 
and consistent with observed data patterns. This method 
is particularly effective in maintaining the integrity of 
categorical and ordinal data, as well as in datasets where 
preserving the distribution of the data is crucial.

Hot-Deck Fusion operates by identifying ‘donor’ records 
that are like records with missing data. For each record or 
data point with a missing value, a donor is selected from 
the pool of complete records based on specific criteria, such 
as proximity in statistical or demographic characteristics. 
The missing value is then replaced with the value from the 
selected donor. This process can be formally represented 
as in the equation (4):

( ) ( )I m D i= 					    (4)

Where:

•	 ( )I t is the imputed value for the missing data point.

•	 ( )D i  is the donor value selected based on the closeness 

to the characteristics of the missing data point.
The selection of donors is a critical step in HDF. It typically 

involves calculating a similarity index or distance measure 

between the incomplete record and each potential donor 
record. The record with the smallest distance or highest 
similarity score is selected as the donor. The distance can 
be computed using the equation (5):

( )21

n
ij ik jkk

S x x
=

= −∑  			   (5)

where:

•	 ijS  is the similarity or distance between the 

incomplete record i and donor record j.

•	
,ik jkx x  are the values of the k-th attribute for 

records i and j, respectively.
•	 n is the number of attributes considered for 

determining similarity.
For categorical data, a common approach involves using 

a matching algorithm that counts the number of attributes 
identical between two records, given in the equation (6).

( )1
ä ,

n
ij ik jkk

M x x
=

=∑ 			   (6)

where δ  is an indicator function that returns 1 if 

ik jkx x=  and 0 otherwise.

Once a donor is selected, the missing value is replaced 
directly with the corresponding value from the donor record. 
This approach can be extended to multivariate missing 
data by conducting a donor selection for each missing 
component individually or by finding a single donor for all 
missing components. The process of replacing the missing 
value is expressed in the equation (7):

miss donorX X= 				    (7)

where:

•	 missX  represents the vector of missing values.

•	 donorX  represents the vector of values from the 

selected donor that corresponds to the missing 
components.

Consider a dataset where a record is missing values for 
attributes A and B. Assume the dataset has three complete 
records as potential donors. The HDF process would involve 
calculating the similarity or distance from the missing record 
to each of the donor records using a chosen metric, selecting 
the donor with the highest similarity or lowest distance and 
then replacing the missing values in attributes A and B with 
those from the selected donor.

This process ensures that the imputed values are realistic 
and maintain the original data distribution, thus minimizing 
the introduction of bias that can often occur with model-
based imputation techniques.

Hot-Deck Fusion is particularly useful in settings where 
the accuracy of categorical and ordinal data imputation is 
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crucial. It is widely applied in survey data analysis, clinical 
data management, and any field where data integrity and 
accuracy are paramount. By relying on actual data points 
rather than estimated or modeled values, HDF provides 
a practical and reliable method for data imputation, 
enhancing the quality of data analyses and the reliability of 
subsequent conclusions drawn from the data.

Integration of Techniques
The integration of LPIHD starts by applying the Lagrange 
Polynomial to each missing entry in the dataset, providing 
an initial estimate. Following this, the HDF method examines 
these initial estimates: if an estimate closely matches a donor 
value from the pool, it is retained; otherwise, it is adjusted 
based on the most similar donor to ensure the imputed 
values are realistic and consistent with the dataset’s overall 
characteristics.

This dual approach ensures a robust imputation process. 
LPI ensures mathematical precision in estimating missing 
values based on observable data trends, while HDF adjusts 
these estimates to reflect the dataset’s real-world complexity 
and diversity. The combination offers a comprehensive 
solution to data imputation challenges, particularly in 
complex scenarios where single-method approaches may 
fall short.

Algorithm-1: Artificial Missingness Induction
Input: Original Dataset D, Missingness Rates p = [0.1, 0.2, 0.3]
Output: Dataset D’ with induced missing values
1.	 for each rate ip  in p
2.	 Copy original dataset   Dto D′
3.	 for each element d D∈ ′
4.	 Generate random number r from uniform distribution 

U(0,1)
5.	 if ir p< :

6.	 Set NaNd =  (mark as missing)
7.	 Return dataset D’ with missing values induced as per 

rate ip
The algorithmic framework for the LPIHD is structured 

to efficiently handle missing data in datasets, particularly 
where the data exhibits non-linear relationships and involves 
various data types. The following detailed description 
outlines each step of the process, from initialization to 
evaluation.

Algorithm 2: LPIHD
Input: Dataset D with missing values  
Output: Imputed Dataset D’

1.	 Initialize: D D′ ←

2.	 for each [ ]X i D∈ ′  with missing:

3.	 	 [ ]         Obs observeddata X i← ∈

4.	 	 [ ]         Miss missingpositions X i← ∈

5.	 for Missm∈ :

6.	 	              ObsmN nearest neighbors of min←

7.	 	 ( )
0

0

         
k m

jj j m
m km j

m x
P m y

x x∏=
≤ ≤ ≠

−
←

−∑

8.	 Replace m in X[i] with P(m)
9.	 for Missm∈ :

10.	 	          DonorPool    completecases of D←

11.	 	             DonorPoold select donor from←

12.	 	 ( )           :if d P m is small−

13.	 	 [ ][ ] ( )                X i m P m←

14.	 else: 

15.	 	 [ ][ ]X i m d←

16.	Return D’
Notations and Symbols Description:
•	 D: Original dataset
•	 D’: Imputed dataset
•	 X[i]: i-th column of dataset D

•	 Obs : Set of observed (non-missing) data points 
in X[i]

•	 Miss : Indices of missing data points in X[i]
•	 m: Index of a missing data point in X[i]

•	 mN : Nearest observed data points to m
•	 P(m): Imputed value at index m calculated using 

Lagrange Polynomial Interpolation

•	 jy : Observed value corresponding to neighbor jx

•	
,j mx x : Indices of the observed and missing data 

points used in the interpolation formula

•	 DonorPool : Set of complete cases from D used for 
selecting donor values

•	 d: Selected donor value from DonorPool

•	
( )d P m− : Absolute difference between donor 

value and interpolated value

Results
Dataset Description
The datasets utilized in this study were selected for their 
distinct characteristics: the Wine Quality dataset represents a 
complex, non-linear dataset, while the heart disease dataset 
exemplifies large-scale, highly imbalanced data. Table 1 
summarizes the key details of these datasets.



The Scientific Temper. Vol. 16, No. 2	 Deepa and Beena 	 3732

Wine Quality Results
The results for the wine quality dataset using the LPIHD 
method show significant improvements across various 
metrics when compared to the HPCNN (Khan et al., 2024). 
As detailed in Table 2 and Figure 2 the LPIHD method 
outperformed HPCNN in accuracy measurements across 
all percentages of missing data. Specifically, using the 
Multi-Layer Perceptron (MLP) model, LPIHD achieved a peak 
accuracy of 75.4% at 10% missing data a substantial increase 
from the 51.9% observed with HPCNN. This improvement 
underscores the capability of LPIHD to enhance predictive 
accuracy effectively, even under conditions of significant 
data missingness.

Furthermore, Table 3 and Figure 3 illustrates the 
comparative analysis of Mean Absolute Error (MAE) metric. 
LPIHD consistently showed lower MAE values compared to 
HPCNN, indicating that the imputed values deviate less from 

Table 1: Datasets Overview

Dataset Source Attributes Instances Characteristics

Wine 
Quality

UCI Repository Fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, 
free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, 
alcohol, quality (score between 0 and 10).

4,898 Complex and non-linear 
relationships among 
features.

Heart 
Disease

Kaggle HeartDisease, BMI, Smoking, AlcoholDrinking, Stroke, 
PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeCategory, 
Race, Diabetic, PhysicalActivity, GenHealth, SleepTime, Asthma, 
KidneyDisease, SkinCancer.

319,400 Large-scale dataset with 
significant class imbalance, 
requiring robust handling 
of minority classes.

Table 2: Comparative results of accuracy for wine quality dataset

ML 
Models

HPCNN LPIHD HPCNN LPIHD HPCNN LPIHD

10(%) 20(%) 30(%)

NB 0.427 0.698 0.431 0.69 0.429 0.673

MLP 0.519 0.754 0.514 0.753 0.504 0.713

Figure 2: Comparative results of accuracy for wine quality dataset

Table 3: Comparative results of MAE for wine quality dataset

ML 
Models

HPCNN LPIHD HPCNN LPIHD HPCNN LPIHD

10(%) 20(%) 30(%)

NB 0.695 0.302 0.679 0.31 0.696 0.327

MLP 0.534 0.246 0.545 0.247 0.557 0.287

the actual values, and thus are more accurate. For instance, 
at 10% missing data, the MAE with LPIHD using the MLP 
model were reduced to 0.246, demonstrating a significant 
decrease from the values recorded by HPCNN.
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Table 4 and Figure 4 illustrates the comparative analysis 
of Root Mean Square Error (RMSE) for wine quality dataset. 
LPIHD steadily showed lower RMSE values compared to 
HPCNN, indicating that the imputed values deviate less from 
the actual values, and thus are more accurate. For instance, 
at 10% missing data, the RMSE with LPIHD using the MLP 
model were reduced to 0.496, representing a substantial 
decline from the values recorded by HPCNN.

Heart Disease Results
As shown in Table 5 and Figure 5 LPIHD enhanced accuracy 
notably, especially for the MLP model, achieving 90.4% 
accuracy at 20% missing data level for heart disease 
dataset. This represents a significant increase compared to 
the HPCNN method, which peaked at 87.4% under similar 
conditions. The Naive Bayes (NB) model also saw improved 

accuracy with LPIHD, reaching up to 78.9% at 30% missing 
data.

Table 6 and Figure 6 details the MAE for the heart disease 
dataset, illustrating that LPIHD method significantly reduced 
MAE across all levels of missing data. For instance, with the 
MLP model under LPIHD, the MAE decreased to 0.096 at 
20% missing data from 0.126 recorded by HPCNN, indicating 
a more precise imputation of missing values. Even the NB 
model saw a reduction in MAE from 0.299 with HPCNN to 
0.285 with LPIHD at 10% missing data.

In terms of RMSE, Table 7 and Figure 7 reflects similar 
improvements brought about by the LPIHD method. The 
RMSE for the MLP model decreased notably from 0.355 
with HPCNN to 0.310 with LPIHD at 20% missing data. 
These results further validate the effectiveness of the LPIHD 
method in reducing error rates and enhancing the reliability 
of data imputation, particularly in complex medical datasets.

Discussion
The results obtained from the implementation of the 
LPIHD method have been promising across various metrics 

Figure 3: Comparative results of MAE for wine quality dataset

Table 4: Comparative results of RMSE for wine quality dataset

ML 
Models

HPCNN LPIHD HPCNN LPIHD HPCNN LPIHD

10(%) 20(%) 30(%)

NB 0.982 0.55 0.958 0.557 0.994 0.571

MLP 0.81 0.496 0.817 0.497 0.833 0.535

Figure 4: Comparative results of RMSE for wine quality dataset

Table 5: Accuracy Results for Heart Disease Dataset

ML 
Models

HPCNN LPIHD HPCNN LPIHD HPCNN LPIHD

10(%) 20(%) 30(%)

NB 0.701 0.715 0.703 0.754 0.702 0.789

MLP 0.874 0.873 0.874 0.904 0.867 0.901

Figure 5: Accuracy Results for Heart Disease Dataset

Table 6: MAE Results for Heart Disease Dataset

ML 
Models

HPCNN LPIHD HPCNN LPIHD HPCNN LPIHD

10(%) 20(%) 30(%)

NB 0.299 0.285 0.297 0.246 0.298 0.211

MLP 0.126 0.127 0.126 0.096 0.133 0.099
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including accuracy, MAE and RMSE as shown in Tables 2 to 
7. The LPIHD method consistently outperformed previous 
HPCNN method in accuracy metrics. For instance, in the wine 
quality dataset, accuracy improvements were evident with 
LPIHD achieving a peak accuracy of 75.4% at 10% missing 
data rate using an MLP model, a substantial increase from 
the 51.9% observed with HPCNN. Such enhancements 
are attributable to the method’s capability to integrate 
polynomial interpolation and hot-deck imputation, thereby 
tailoring imputation more closely to the underlying data 
structures and patterns.

Furthermore, LPIHD demonstrated significant reductions 
in MAE and RMSE across both datasets. These metrics are 
critical as they indicate a closer match between the imputed 
and actual values, essential for maintaining the integrity and 
utility of the dataset in subsequent analyses. Notably, the 

heart disease dataset saw MAE improvements, with LPIHD 
reducing the MAE to 0.096 at 20% missing data, compared 
to 0.126 with HPCNN. This precision is particularly beneficial 
in healthcare datasets where accurate data representation is 
crucial for patient diagnosis and treatment planning.

Despite its advantages, LPIHD’s implementation is not 
devoid of challenges. The complexity of integrating two 
distinct imputation methods demands careful tuning and 
validation to ensure optimal performance across different 
types of datasets. The method’s dependency on the 
quality and arrangement of available data for polynomial 
interpolation and the selection of appropriate donors for 
hot-deck imputation could limit its applicability in extremely 
sparse or irregular datasets. Additionally, the computational 
overhead involved in executing two sequential imputation 
phases may impact its scalability and efficiency in larger 
datasets.

Conclusion
Data imputation plays a critical role in ensuring the accuracy 
and integrity of datasets used in machine learning, where 
missing data can significantly impair the performance and 
reliability of predictive models. This study introduced a novel 
hybrid imputation method, LPIHD, aimed at enhancing the 
accuracy and robustness of imputed data, particularly in 
complex datasets with multiple data types. The method 
combines Lagrange Polynomial Interpolation, which utilizes 
known data points to estimate missing values, with Hot-
Deck Fusion, where these estimates are refined using similar 
values from a donor pool. Applied to two distinct datasets—
wine quality and heart disease—LPIHD demonstrated 
significant improvements. Specifically, it achieved accuracy 
increases up to 75.4% and 90.1%, while reducing MAE to 
0.246 and RMSE to 0.310 at varying rates of missing data for 
the respective datasets. Despite its effectiveness, LPIHD’s 
computational demands and reliance on the availability 
of appropriate donor data present limitations, particularly 
in sparsely populated or highly irregular datasets. Future 
work will focus on enhancing the computational efficiency 
of LPIHD and expanding its application to real-time data 
streaming environments, aiming to broaden its utility across 
more dynamic and diverse data scenarios. These efforts seek 
to establish LPIHD as a foundational tool for reliable data 
imputation in critical analytical applications.
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