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polynomial interpolation and hot-deck fusion
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Abstract

Dataimputation is vital in preserving the quality of datasets in machine learning, where missing data leads to decreased model accuracy.
This research proposes a new imputation method called Lagrange Polynomial Interpolation with Hot-Deck Fusion (LPIHD) to enhance
the quality and reliability of imputed datasets, mainly when the data is multifaceted and comprises multiple types. LPIHD combines
Lagrange Polynomial Interpolation and Hot-Deck Fusion. Lagrange Polynomial Interpolation estimates missing values using known data
points. Hot-Deck Fusion refines these estimates by borrowing similar values from a donor population. This hybrid approach, applied to
two distinct datasets about wine quality and heart diseases, enhances precision by achieving lower MAE and RMSE values than those
previously recorded. LPIHD achieved better accuracy for the wine quality and heart disease datasets, respectively, at varying rates of
missing data. MAE and RMSE were also notably reduced across both datasets, affirming the method’s efficacy. These findings suggest
that LPIHD can produce better and more accurate data imputations, making it a helpful technique for the field that needs a strong

analytical platform.
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Introduction

The imputation of missing data is playing an important role
in data science. and, more specifically, in machine learning
because data plays a central role in learning the algorithm
(Ahmad et al., 2024). Data can be missing due to one of
the reasons, such as human mistakes, machine errors, or
lack of data collection, and these types of inadequacies
significantly threaten the study’s credibility (Albahri et al.,
2023). If these gaps are not eliminated, the models derived
from such research may contain inherent bias or errors. It
potentially leads to incorrect conclusions and subsequent
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erroneous decisions. Therefore, imputation is not just a fix
but an enrichment asset that strengthens statistics and
artificial intelligence forecasts by creating approximations
of missing values while maintaining the structure and
connection of the data.

Also, data imputation methods have implications for the
quality of the models used in predictive analytics (Shadbahr
etal,, 2023). Incomplete data can positively impact machine
training since it creates overfitting or underfitting models
when applied in the real world. By doing the imputation
correctly, data scientists can preserve the data’s quality and
guarantee that the models derived therefrom are precise
and usable on other related tasks. It aids in optimizing
the usage of current information within a business to
enhance understanding made in giving out conclusions for
pertinent analytics within the organization. The imputation
techniques, therefore, stand as the foundation of high-
quality data analysis and enhancement of the reliable
machine learning model that is crucial in various industries
to date.

Problem Statement

Current dataimputation methods could be more decisive in
handling large datasets with non-linear and heterogeneous
values. Other techniques like mean imputation or regression
analysis might ensure that the complexity of data details is
manageable while hindering the complexity of the linked
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variables. This issue is even more so when analyzing datasets
with a high level of heterogeneity, and the data typesinclude
nominal, ordinal, and interval levels of measurements. Such
methods may bring a specific bias or mask variability that
is initially present in data, which can result in reduced
accuracy of analytics and even untruthful results in the field
of predictive analytics. Therefore, it is growing important to
develop sophisticated imputation mechanisms due to the
increased complexity and heterogeneity of contemporary
data sources while at the same time ensuring that the data
analysis results are reliable and accurate.

Research Objectives

The primary objective of this research is to develop a

hybrid imputation method that significantly enhances the

accuracy and robustness of data handling, particularly in
datasets plagued by missing values. This novel approach
seeks to amalgamate the strengths of various imputation
techniques to create a more reliable and efficient method
for dealing with incomplete data across diverse scenarios.

Key aims include:

- Tointegrate advanced mathematical models to improve
the precision of imputed values, thereby increasing
the overall accuracy of subsequent data analyses and
machine learning models.

To design the method to be resilient across various types
of data, including categorical and ordinal, ensuring
consistent performance regardless of the dataset’s
complexity.

« Toenable the imputation method to dynamically adjust
to the specific characteristics of the dataset, such as the
distribution of missing data and the presence of non-
linear relationships among features.

Related Works

Data imputation techniques in healthcare were examined,
emphasizing challenges and ethical concerns related
to complex health data. Both traditional and Al-driven
methods were explored, demonstrating their effectiveness
through real-world examples (Nayak & Khilar, 2024).
Lagrange interpolation for volatile datasets was analyzed,
with findings indicating that cubic interpolation was most
effective, especially in loT systems (Oktaviani, Abdurohman,
& Erfianto, 2023). The Cyclical Tree-Based Hot Deck (CTBHD)
method was introduced for complex survey data, enhancing
stability and reducing bias through extensive customization
and a cyclical approach (Sukasih & Scott, 2023). A new robust
imputation algorithm, imputeRobust, was developed to
improve the precision and reliability of large-scale data
analyses by effectively managing outliers and missing data
(Templ, 2023).

Various imputation methods within S&P 500 financial
datasets were compared, with MissForest identified as
superior in enhancing predictive accuracy (Zamri et al.,

2024). A probabilistic model forimputing data in employee
datasets was presented, demonstrating high accuracy in
diverse applications, from Kaggle competitions to real-
world settings (Arefin & Masum, 2024). A new approach to
handling missing data in accelerometer-based studies was
developed, using hot deck multiple imputation to achieve
less bias and better confidence interval coverage (Butera et
al., 2019). Imputation for small and structured datasets was
enhanced with a neural network-based architecture that
uses adversarial learning to estimate uncertainty, improving
traditional imputation techniques (Hameed & Ali, 2022).

A survey of imputation techniques offered insights
into their effectiveness and limitations for managing large
datasets, guiding future studies in quantitative research
(Hameed & Ali, 2023). Challenges of multivariate polynomial
interpolation were tackled with the novel Random Lagrange
Multivariate Polynomial Interpolation Algorithm (RLMVPIA),
enhancing computational efficiency (Essanhaji & Errachid,
2022). A multi-feature generation network for industrial
time-series data was introduced, significantly improving
data imputation accuracy (Zheng et al., 2023). Missing
data imputation was improved by integrating high-order
polynomial equations with CNNs, achieving superior
accuracy on UCI datasets, and maintaining data integrity
(Khan et al., 2024).

Methodology

Figure 1illustrates the structured workflow of the Lagrange
Polynomial Interpolation with Hot-Deck Fusion (LPIHD)
methodology. The process begins with the raw input data,
where missing values are identified across each feature.
In Phase 1, Lagrange Polynomial Interpolation is applied
to these identified missing points, leveraging observed
neighboring values to estimate the missing data. Once these
initial estimates are generated, the workflow transitions
to Phase 2, where Hot-Deck Imputation is used for further
refinement. This phase involves selecting similar donor
records from the complete cases in the dataset to adjust
or replace the estimates from Phase 1. The integration of
results from both phases leads to the final imputed dataset,
which is then analyzed using machine learning models
such as Naive Bayes (NB) and Multi-Layer Perceptron (MLP)
to validate the imputation’s effectiveness. This cohesive
process ensures that the final dataset is robust and ready
for advanced analytical applications.

This work introduced artificial missingness into the
datasets to evaluate the performance of the imputation
methods. This approach allowed for controlled experimental
conditions to assess how well each imputation method
recovers lost information. Missingness was induced at three
different rates: 10%, 20%, and 30%, representing varying
levels of data sparsity that might be encountered in real-
world scenarios.
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Figure 1: LPIHD Workflow

The process of creating artificial missingness involves
randomly selecting a specified percentage of data points
within the dataset and systematically removing their values.
This is mathematically represented by the equation (1):

NaN  with probability p
M(x) = Q)
x with probability(l - p)

where M(x) denotes the potentially missing data point,
xis the original data value, NaN represents a missing value
and pis the probability of a data point being missing, set to
0.1,0.2,0r 0.3 depending on the desired missingness level.

Example

Considerasmalldatasetfordemonstration: [4,8,15,16,23,42]
. Applying a 20% artificial missingness rate, each data point
has a 20% chance of being replaced with NaN. A possible
outcome might be [4,NaN, 15,16,23,42] ,indicating that the
second position in the dataset was selected to be missing
under the induced conditions.

Lagrange Polynomial Interpolation

Lagrange Polynomial Interpolation (LPI) is a classic
mathematical method that estimates the values of a function
at specific points by leveraging its known values at other
points. This technique is particularly relevant in the realm
of data imputation, where it facilitates the estimation of
missing values through the utilization of known data points.
The general interpolation formula is given in equation (2):

k
P(x)= z_,zoijj (x) @
Where:

. P(x) is the polynomial that estimates missing values.

« Y, are the known data values.

- L (x) are the Lagrange basis polynomials.

Each basis polynomial L, (x) is defined by the product
as in the equation (3):

L;(x)=T10<m<k m# j i

(3)

xj—xm

This method is exceptionally effective in datasets where
relationships between variables are non-linear, as the
polynomial can flexibly fit a wide range of data patterns. The
derivation of the Lagrange polynomial involves creating a
series of basis polynomials, each corresponding to one of
the known data points. These polynomials are designed
such that each one equals 1 at its corresponding data point
and 0 at all other data points included in the interpolation.

Consider a simple dataset with three known data
points: (xo,yo):(1,2),(x1,y1):(3,6),(x2,y2):(4,8)
. To estimate the value of the function at x =
2, the Lagrange interpolation formula would be
applied as follows:

The basis polynomials would be computed using the
equation (3):

Lo ()= ((x x)(x-x) _

%o _xl)(xo —x2)

_ ()
e KR

L2<x)=((x_x°)(’“‘x‘) _(r=(=3) _ (x=1)(x-3)

xz—xo)(xz—xl) (4—1)(4—3) 3

Then, the Lagrange polynomial P(x) would be assembled
by combining these basis polynomials with the known y
values using the equation (2):
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P(x):2.(x—3)(x—4)+6.(x—l)(x—4)+8.(x—1)(x—3)

6 -2 3

Calculating P(2) results in:

p2)=2 2724 2-0C-4)  (-)E-3)
6 -2 3

(D
3

+

pa)-2. ) (0C2)
6

2 -1
P(2)=2-2-6+8 —

p(z):2_6_§:w:__‘24:_8
3 3 3 3

Lagrange Polynomial Interpolation’s strength lies in its
ability to precisely model the intricate relationships inherent
in real-world data. This capability makes it a valuable tool
in fields such as climatology, economics and any other area
where prediction models based on historical data are used.
Its adaptability ensures that the interpolations are both
accurate and practical for data-driven decision-making
processes, thereby maintaining the integrity and reliability
of statistical analyses and predictive modeling.

Hot-Deck Fusion

Hot-Deck Fusion (HDF) is a sophisticated method used
in data imputation to handle missing values by drawing
upon a pool of donors—records within the dataset that
have complete data. Unlike other imputation techniques
that rely on statistical or model-based assumptions, HDF
utilizes actual data to ensure the imputed values are realistic
and consistent with observed data patterns. This method
is particularly effective in maintaining the integrity of
categorical and ordinal data, as well as in datasets where
preserving the distribution of the data is crucial.

Hot-Deck Fusion operates by identifying ‘donor’ records
that are like records with missing data. For each record or
data point with a missing value, a donor is selected from
the pool of complete records based on specific criteria, such
as proximity in statistical or demographic characteristics.
The missing value is then replaced with the value from the
selected donor. This process can be formally represented
as in the equation (4):

I(m)=D(i) 4)

Where:

. 1( )t is the imputed value for the missing data point’

- D (z) is the donor value selected based on the closeness

to the characteristics of the missing data point.
The selection of donors is a critical step in HDF. It typically
involves calculating a similarity index or distance measure

between the incomplete record and each potential donor
record. The record with the smallest distance or highest
similarity score is selected as the donor. The distance can
be computed using the equation (5):

5 = \/ () ©)

where:

S, is the similarity or distance between the

incomplete record i and donor record j.

Xy, X are the values of the k-th attribute for

records i and j, respectively.
+ nis the number of attributes considered for
determining similarity.
For categorical data, a common approach involves using
a matching algorithm that counts the number of attributes
identical between two records, given in the equation (6).

M = z:zlé(xik’xjk) (6)

where ¢ is an indicator function that returns 1 if
Xy =x; and 0 otherwise.

Once a donor is selected, the missing value is replaced
directly with the corresponding value from the donor record.
This approach can be extended to multivariate missing
data by conducting a donor selection for each missing
component individually or by finding a single donor for all
missing components. The process of replacing the missing
value is expressed in the equation (7):

Xm[ss = Xdonor (7)
where:
. X represents the vector of missing values.

miss
* Xomor represents the vector of values from the

selected donor that corresponds to the missing
components.

Consider a dataset where a record is missing values for
attributes A and B. Assume the dataset has three complete
records as potential donors. The HDF process would involve
calculating the similarity or distance from the missing record
to each of the donor records using a chosen metric, selecting
the donor with the highest similarity or lowest distance and
then replacing the missing values in attributes A and B with
those from the selected donor.

This process ensures that the imputed values are realistic
and maintain the original data distribution, thus minimizing
the introduction of bias that can often occur with model-
based imputation techniques.

Hot-Deck Fusion is particularly useful in settings where
the accuracy of categorical and ordinal data imputation is
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crucial. It is widely applied in survey data analysis, clinical
data management, and any field where data integrity and
accuracy are paramount. By relying on actual data points
rather than estimated or modeled values, HDF provides
a practical and reliable method for data imputation,
enhancing the quality of data analyses and the reliability of
subsequent conclusions drawn from the data.

Integration of Techniques
The integration of LPIHD starts by applying the Lagrange
Polynomial to each missing entry in the dataset, providing
aninitial estimate. Following this, the HDF method examines
these initial estimates: if an estimate closely matches a donor
value from the pool, it is retained; otherwise, it is adjusted
based on the most similar donor to ensure the imputed
values are realistic and consistent with the dataset’s overall
characteristics.

This dual approach ensures a robust imputation process.
LPI ensures mathematical precision in estimating missing
values based on observable data trends, while HDF adjusts
these estimates to reflect the dataset’s real-world complexity
and diversity. The combination offers a comprehensive
solution to data imputation challenges, particularly in
complex scenarios where single-method approaches may
fall short.

Algorithm-1: Artificial Missingness Induction

Input: Original Dataset D, Missingness Rates p=[0.1,0.2,0.3]

Output: Dataset D' with induced missing values

1. foreachrate p, inp

2. Copy original dataset Dto D’

3. foreachelement d e D'

4. Generate random number r from uniform distribution
u(,1)

5 if r<p;:

6. Set d =NaN (mark as missing)
7. Return dataset D’ with missing values induced as per
rate p;

The algorithmic framework for the LPIHD is structured
to efficiently handle missing data in datasets, particularly
where the data exhibits non-linear relationships and involves
various data types. The following detailed description
outlines each step of the process, from initialization to
evaluation.

Algorithm 2: LPIHD

Input: Dataset D with missing values
Output: Imputed Dataset D’

1. Initialize: D'« D
2. foreach X[i]e D' with missing:

3. Obs «— observeddata € X [i]

4. Miss «— missingpositions € X[i]

5. for m e Miss:

6. N,, < nearest neighbors of minObs

7. k "= X
P(m)« Z/_:Oy,» LR ——

0<m<km# j

8. Replace min X[i] with P(m)

9. for me Miss:

10. DonorPool < complete cases of D

11. d < select donor from DonorPool

12. zf|d —P(m)|issmall:

13, X[i][m] < P(m)

14. else:

15. X[i][m]«d

16. Return D’
Notations and Symbols Description:
«  D:Original dataset
«  D"Imputed dataset
«  X[il:i-th column of dataset D
. Obs : Set of observed (non-missing) data points
in X[i]
. Miss :Indices of missing data points in X[i]
« m:Index of a missing data point in X[i]
N,, : Nearest observed data points to m
«  P(m): Imputed value at index m calculated using
Lagrange Polynomial Interpolation
»; : Observed value corresponding to neighbor x;

x;,%,: Indices of the observed and missing data

points used in the interpolation formula

. DonorPool : Set of complete cases from D used for
selecting donor values

« d:Selected donor value from DonorPool

|d—P(m)|: Absolute difference between donor

value and interpolated value

Results

Dataset Description

The datasets utilized in this study were selected for their
distinct characteristics: the Wine Quality dataset represents a
complex, non-linear dataset, while the heart disease dataset
exemplifies large-scale, highly imbalanced data. Table 1
summarizes the key details of these datasets.
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Table 1: Datasets Overview

Dataset  Source Attributes Instances Characteristics

Wine UCI Repository  Fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, 4,898 Complex and non-linear

Quality free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, relationships among
alcohol, quality (score between 0 and 10). features.

Heart Kaggle HeartDisease, BMI, Smoking, AlcoholDrinking, Stroke, 319,400 Large-scale dataset with

Disease PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeCategory, significant class imbalance,
Race, Diabetic, PhysicalActivity, GenHealth, SleepTime, Asthma, requiring robust handling
KidneyDisease, SkinCancer. of minority classes.

Wine Quality Results Table 2: Comparative results of accuracy for wine quality dataset

The results for the wine quality dataset using the LPIHD
method show significant improvements across various
metrics when compared to the HPCNN (Khan et al., 2024).
As detailed in Table 2 and Figure 2 the LPIHD method
outperformed HPCNN in accuracy measurements across
all percentages of missing data. Specifically, using the
Multi-Layer Perceptron (MLP) model, LPIHD achieved a peak
accuracy of 75.4% at 10% missing data a substantial increase
from the 51.9% observed with HPCNN. This improvement
underscores the capability of LPIHD to enhance predictive
accuracy effectively, even under conditions of significant
data missingness.

Furthermore, Table 3 and Figure 3 illustrates the
comparative analysis of Mean Absolute Error (MAE) metric.
LPIHD consistently showed lower MAE values compared to
HPCNN, indicating that the imputed values deviate less from

ML HPCNN LPIHD HPCNN LPIHD HPCNN  LPIHD
Models ;55) 20(%) 30(%)

NB 0427 0698 0431 069 0429 0673
MLP 0519 0754 0514 0753 0504 0713

Table 3: Comparative results of MAE for wine quality dataset

ML HPCNN LPIHD HPCNN LPIHD HPCNN LPIHD
Models ;95) 20(%) 30(%)

NB 0695 0302 0679 031 069 0327
MLP 0534 0246 0545 0247 0557 0287

the actual values, and thus are more accurate. For instance,
at 10% missing data, the MAE with LPIHD using the MLP
model were reduced to 0.246, demonstrating a significant
decrease from the values recorded by HPCNN.
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Figure 2: Comparative results of accuracy for wine quality dataset
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Table 4 and Figure 4 illustrates the comparative analysis
of Root Mean Square Error (RMSE) for wine quality dataset.
LPIHD steadily showed lower RMSE values compared to
HPCNN, indicating that the imputed values deviate less from
the actual values, and thus are more accurate. For instance,
at 10% missing data, the RMSE with LPIHD using the MLP
model were reduced to 0.496, representing a substantial
decline from the values recorded by HPCNN.

Heart Disease Results

As shown in Table 5 and Figure 5 LPIHD enhanced accuracy
notably, especially for the MLP model, achieving 90.4%
accuracy at 20% missing data level for heart disease
dataset. This represents a significant increase compared to
the HPCNN method, which peaked at 87.4% under similar
conditions. The Naive Bayes (NB) model also saw improved

Table 4: Comparative results of RMSE for wine quality dataset

ML HPCNN LPIHD HPCNN LPIHD HPCNN  LPIHD
Models 1(9) 20(%) 30(%)
NB 0982 055 0958 0557 099 0571

MLP 0.81 0496 0817 0497 0.833 0.535

Table 5: Accuracy Results for Heart Disease Dataset

ML HPCNN LPIHD HPCNN LPIHD HPCNN  LPIHD
Models1(9) 20(%) 30(%)
NB 0701 0715 0703 0754 0702 0789

MLP 0.874 0.873 0.874 0.904 0.867 0.901

Table 6: MAE Results for Heart Disease Dataset

ML HPCNN LPIHD HPCNN LPIHD HPCNN  LPIHD
Models ;445) 20(%) 30(%)
NB 0299 0285 0297 0246 0298 0211

MLP 0.126 0.127 0.126 0.096 0.133 0.099
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Figure 4: Comparative results of RMSE for wine quality dataset
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Figure 5: Accuracy Results for Heart Disease Dataset

accuracy with LPIHD, reaching up to 78.9% at 30% missing
data.

Table 6 and Figure 6 details the MAE for the heart disease
dataset, illustrating that LPIHD method significantly reduced
MAE across all levels of missing data. For instance, with the
MLP model under LPIHD, the MAE decreased to 0.096 at
20% missing data from 0.126 recorded by HPCNN, indicating
a more precise imputation of missing values. Even the NB
model saw a reduction in MAE from 0.299 with HPCNN to
0.285 with LPIHD at 10% missing data.

In terms of RMSE, Table 7 and Figure 7 reflects similar
improvements brought about by the LPIHD method. The
RMSE for the MLP model decreased notably from 0.355
with HPCNN to 0.310 with LPIHD at 20% missing data.
These results further validate the effectiveness of the LPIHD
method in reducing error rates and enhancing the reliability
of dataimputation, particularly in complex medical datasets.

Discussion

The results obtained from the implementation of the
LPIHD method have been promising across various metrics
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Figure 7: RMSE Results for Heart Disease Dataset

Table 7: RMSE Results for Heart Disease Dataset

ML HPCNN LPIHD HPCNN LPIHD HPCNN  LPIHD
Models 1(9) 20(%) 30(%)
NB 0547 0534 0545 0496 0546 0459

MLP 0355 0356 0355 031 0.365 0.315

including accuracy, MAE and RMSE as shown in Tables 2 to
7. The LPIHD method consistently outperformed previous
HPCNN method in accuracy metrics. For instance, in the wine
quality dataset, accuracy improvements were evident with
LPIHD achieving a peak accuracy of 75.4% at 10% missing
data rate using an MLP model, a substantial increase from
the 51.9% observed with HPCNN. Such enhancements
are attributable to the method’s capability to integrate
polynomial interpolation and hot-deck imputation, thereby
tailoring imputation more closely to the underlying data
structures and patterns.

Furthermore, LPIHD demonstrated significant reductions
in MAE and RMSE across both datasets. These metrics are
critical as they indicate a closer match between the imputed
and actual values, essential for maintaining the integrity and
utility of the dataset in subsequent analyses. Notably, the

heart disease dataset saw MAE improvements, with LPIHD
reducing the MAE to 0.096 at 20% missing data, compared
t0 0.126 with HPCNN. This precision is particularly beneficial
in healthcare datasets where accurate data representation is
crucial for patient diagnosis and treatment planning.

Despite its advantages, LPIHD's implementation is not
devoid of challenges. The complexity of integrating two
distinct imputation methods demands careful tuning and
validation to ensure optimal performance across different
types of datasets. The method’s dependency on the
quality and arrangement of available data for polynomial
interpolation and the selection of appropriate donors for
hot-deckimputation could limit its applicability in extremely
sparse or irregular datasets. Additionally, the computational
overhead involved in executing two sequential imputation
phases may impact its scalability and efficiency in larger
datasets.

Conclusion

Data imputation plays a critical role in ensuring the accuracy
and integrity of datasets used in machine learning, where
missing data can significantly impair the performance and
reliability of predictive models. This study introduced a novel
hybrid imputation method, LPIHD, aimed at enhancing the
accuracy and robustness of imputed data, particularly in
complex datasets with multiple data types. The method
combines Lagrange Polynomial Interpolation, which utilizes
known data points to estimate missing values, with Hot-
Deck Fusion, where these estimates are refined using similar
values from a donor pool. Applied to two distinct datasets—
wine quality and heart disease—LPIHD demonstrated
significantimprovements. Specifically, it achieved accuracy
increases up to 75.4% and 90.1%, while reducing MAE to
0.246 and RMSE to 0.310 at varying rates of missing data for
the respective datasets. Despite its effectiveness, LPIHD's
computational demands and reliance on the availability
of appropriate donor data present limitations, particularly
in sparsely populated or highly irregular datasets. Future
work will focus on enhancing the computational efficiency
of LPIHD and expanding its application to real-time data
streaming environments, aiming to broaden its utility across
more dynamic and diverse data scenarios. These efforts seek
to establish LPIHD as a foundational tool for reliable data
imputation in critical analytical applications.

Acknowledgements

The author extends gratitude to the academic mentors and
colleagues at the department whose insights and expertise
greatly contributed to the research, as well as the financial
support from the university which facilitated this project.

References

Ahmad, A. F,, Alshammari, K., Ahmed, 1., & Sayed, M. D. (2024).
Machine Learning for Missing Value Imputation. arXiv
preprint arXiv:2410.08308. https://doi.org/10.48550/



3735

Data Imputation Technique using LPIHD

arXiv.2410.08308

Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Bager, N.
S., Alzubaidi, L., & Deveci, M. (2023). A systematic review
of trustworthy and explainable artificial intelligence in
healthcare: Assessment of quality, bias risk, and data fusion.
Information Fusion, 96, 156-191. https://doi.org/10.1016/j.
inffus.2023.03.008

Arefin, M. N., & Masum, A. K. M. (2024). A Probabilistic Approach
for Missing Data Imputation. Complexity, 2024(1), 4737963.
https://doi.org/10.1155/2024/4737963

Butera, N. M., Li, S., Evenson, K. R., Di, C., Buchner, D. M., LaMonte,
M. J,, ... & Herring, A. (2019). Hot deck multiple imputation
for handling missing accelerometer data. Statistics in
biosciences, 11, 422-448. https://doi.org/10.1007/5s12561-
018-9225-4

Essanhaji, A., & Errachid, M. (2022). Lagrange multivariate
polynomial interpolation: a random algorithmic
approach. Journal of Applied Mathematics, 2022(1), 8227086.
https://doi.org/10.1155/2022/8227086

Hameed, W.M., & Ali,N.A.(2022). Enhancing imputation techniques
performance utilizing uncertainty aware predictors and
adversarial learning. Periodicals of Engineering and Natural
Sciences (PEN), 10(3), 350-367.

Hameed, W. M., & Ali, N. A. (2023). Missing value imputation
techniques: a survey. UHD Journal of Science and
Technology, 7(1), 72-81. https://doi.org/10.21928/uhdjst.
v7n1y2023.pp72-81

Khan, H., Rasheed, M. T., Liu, H., & Zhang, S. (2024). High-
order polynomial interpolation with CNN: A robust
approach for missing data imputation. Computers and
Electrical Engineering, 119, 109524. https://doi.org/10.1016/j.
compeleceng.2024.109524

Lv, Z.,, Chen, K., Zhang, T., Zhao, J., & Wang, W. (2023). Multi-

feature generation network-based imputation method
for industrial data with high missing rate. Expert Systems
with Applications, 227, 120229. https://doi.org/10.1016/j.
eswa.2023.120229

Nayak, S., & Khilar, P. M. (2024). Data Imputation in Healthcare
Applications. In Al Healthcare Applications and Security,
Ethical and Legal Considerations (pp. 49-67). |Gl Global. DOI:
10.4018/979-8-3693-7452-8.ch004

Oktaviani, I. D., Abdurohman, M., & Erfianto, B. (2023). Fluctuating
Small Data Imputation with Lagrange Interpolation Based.
In Information Systems for Intelligent Systems: Proceedings
of ISBM 2022 (pp. 211-217). Singapore: Springer Nature
Singapore. https://doi.org/10.1007/978-981-19-7447-2_19

Shadbahr, T., Roberts, M., Stanczuk, J., Gilbey, J., Teare, P., Dittmer,
S., ... & Schonlieb, C. B. (2023). The impact of imputation
quality on machine learning classifiers for datasets with
missing values. Communications Medicine, 3(1), 139. https://
doi.org/10.1038/543856-023-00356-z

Sukasih, A. S., & Scott, V. (2023). Cyclical Tree-Based Hot Deck
Imputation. RTI Press.

Templ, M. (2023). Enhancing precision in large-scale data analysis:
an innovative robust imputation algorithm for managing
outliers and missing values. Mathematics, 11(12), 2729. https:/
doi.org/10.3390/math11122729

Templ, M. (2023). Enhancing precision in large-scale data analysis:
an innovative robust imputation algorithm for managing
outliers and missing values. Mathematics, 11(12), 2729. https:/
doi.org/10.3390/math11122729

Zamri,N. A, Jaya, M. 1., Irawati, I. D., Rassem, T. H., & Kasim, S. (2024).
Comparative Analysis of Imputation Methods for Enhancing
Predictive Accuracy in Data Models. JOIV: International
Journal on Informatics Visualization, 8(3), 1271-1276. http://
dx.doi.org/10.62527/joiv.8.3.1666



