Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.03Keywords:
Brain tumor diagnosis, Epileptic seizures detection, Sokal–Michener’s multivariate relief matching technique, Optimizer to minimize data dimensionality, Gaussian Kernelized Transformer Learning model, ROC curve analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Brain tumor is an abnormal growth of cells in brain or central spinal canal. Tumors are benign (non-cancerous) or malignant (cancerous). They can be invented in the brain (primary tumors) or spread to other elements of the body. Early detection significantly improves survival rates and overall prognosis for patients by enabling intervention before tumors grow larger or spread, which can complicate treatment. Early intervention also preserves brain function and quality of life while minimizing severe neurological damage or symptoms. Epileptic seizures are a significant clinical symptom and a potential early indicator of brain tumors in patients. Conventional machine learning and deep learning face significant challenges in accurately detecting brain tumors with minimal time consumption. In this paper, a novel technique called multivariate relief matching gaussian kernelized transformer learning (MRMGKTL) model has been developed. The major intent of the MRMGKTL model is to enhance the accuracy of brain tumor detection through the recognition of epileptic seizures. MRMGKTL model comprises data acquisition, feature selection, and classification. In the data acquisition phase, electrical activity data from the brains of patients are collected from datasets for diagnosing brain tumors based on epileptic seizures. Following data acquisition, Sokal– Michener’s multivariate relief matching technique is used to choose the most significant aspects of the dataset. The feature selection process in the proposed method aims to minimize the time required for tumor detection. Using the selected features, brain tumor disease diagnosis is performed using a Gaussian Kernelized transformer learning model to detect and diagnose brain tumors associated with epileptic seizure severity levels with higher accuracy. This approach ensures the accurate identification of brain tumors and associated risk factors with minimal time consumption. Experimental assessment evaluates various factors. Analyzed outcomes demonstrate that the proposed MRMGKTL model achieves superior performance in accuracy of brain tumor diagnosis and reduces time consumption compared to conventional deep learning methods.Abstract
How to Cite
Downloads
Similar Articles
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

