Enhancing IoT blockchain scalability through the eepos consensus algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.02Keywords:
Blockchain, Consensus Algorithm, EePoS, Energy Efficiency, IoT, Proof of Stake.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of blockchain technology with the Internet of Things (IoT) introduces significant scalability, energy efficiency, and security challenges, particularly when using traditional consensus mechanisms like Proof of Work (PoW). IoT networks generate vast amounts of data while operating under resource constraints, necessitating the development of consensus algorithms that balance energy efficiency, transaction throughput, and security. Addressing these challenges is critical for the sustainable adoption of blockchain in IoT ecosystems. This research aims to enhance blockchain scalability and performance in IoT environments through the development of the Enhanced Efficient Proof of Stake (EePoS) consensus algorithm. The objective is to provide a framework that optimizes validator selection, minimizes energy consumption, and ensures robust security against common blockchain threats. The proposed method employs a multi-layered architecture, selective validation, and a behavior-aware penalty-reward system to ensure efficient consensus. Key security metrics, including Probability of Successful Attack (PSA) and Forking Rate (FR), were evaluated to demonstrate the algorithm’s resilience. EePoS reduces PSA by dynamically adjusting validator selection based on stake, behavior, and transaction load while decreasing FR through cluster-based voting and hierarchical aggregation. Experimental results demonstrated 20% lower PSA, 30% reduced FR, and 8% faster consensus time compared to ePoS. Throughput improved to 296 TPS while reducing CPU and memory utilization, ensuring robust performance for resource-constrained IoT networks. The novelty of this work lies in the tailored enhancements to the PoS framework, specifically designed for IoT constraints, making EePoS a scalable, energy-efficient, and secure solution for IoT blockchain integration.Abstract
How to Cite
Downloads
Similar Articles
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Deepika M, Antonitte Vinoline I, An integrated inventory system for profit maximization considering partial demand satisfaction , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sirajum Munira Priety, Farhan Bin Manjur, AI Driven Approach in Smart Manufacturing in Bangladesh , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

