Enhancing IoT blockchain scalability through the eepos consensus algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.02Keywords:
Blockchain, Consensus Algorithm, EePoS, Energy Efficiency, IoT, Proof of Stake.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of blockchain technology with the Internet of Things (IoT) introduces significant scalability, energy efficiency, and security challenges, particularly when using traditional consensus mechanisms like Proof of Work (PoW). IoT networks generate vast amounts of data while operating under resource constraints, necessitating the development of consensus algorithms that balance energy efficiency, transaction throughput, and security. Addressing these challenges is critical for the sustainable adoption of blockchain in IoT ecosystems. This research aims to enhance blockchain scalability and performance in IoT environments through the development of the Enhanced Efficient Proof of Stake (EePoS) consensus algorithm. The objective is to provide a framework that optimizes validator selection, minimizes energy consumption, and ensures robust security against common blockchain threats. The proposed method employs a multi-layered architecture, selective validation, and a behavior-aware penalty-reward system to ensure efficient consensus. Key security metrics, including Probability of Successful Attack (PSA) and Forking Rate (FR), were evaluated to demonstrate the algorithm’s resilience. EePoS reduces PSA by dynamically adjusting validator selection based on stake, behavior, and transaction load while decreasing FR through cluster-based voting and hierarchical aggregation. Experimental results demonstrated 20% lower PSA, 30% reduced FR, and 8% faster consensus time compared to ePoS. Throughput improved to 296 TPS while reducing CPU and memory utilization, ensuring robust performance for resource-constrained IoT networks. The novelty of this work lies in the tailored enhancements to the PoS framework, specifically designed for IoT constraints, making EePoS a scalable, energy-efficient, and secure solution for IoT blockchain integration.Abstract
How to Cite
Downloads
Similar Articles
- M. Deepika, I Antonitte Vinoline, Optimization of an Advanced Integrated Inventory Model Considering Shortages and Deterioration across Varying Demand Functions , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

