Enhancing IoT blockchain scalability through the eepos consensus algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.02Keywords:
Blockchain, Consensus Algorithm, EePoS, Energy Efficiency, IoT, Proof of Stake.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of blockchain technology with the Internet of Things (IoT) introduces significant scalability, energy efficiency, and security challenges, particularly when using traditional consensus mechanisms like Proof of Work (PoW). IoT networks generate vast amounts of data while operating under resource constraints, necessitating the development of consensus algorithms that balance energy efficiency, transaction throughput, and security. Addressing these challenges is critical for the sustainable adoption of blockchain in IoT ecosystems. This research aims to enhance blockchain scalability and performance in IoT environments through the development of the Enhanced Efficient Proof of Stake (EePoS) consensus algorithm. The objective is to provide a framework that optimizes validator selection, minimizes energy consumption, and ensures robust security against common blockchain threats. The proposed method employs a multi-layered architecture, selective validation, and a behavior-aware penalty-reward system to ensure efficient consensus. Key security metrics, including Probability of Successful Attack (PSA) and Forking Rate (FR), were evaluated to demonstrate the algorithm’s resilience. EePoS reduces PSA by dynamically adjusting validator selection based on stake, behavior, and transaction load while decreasing FR through cluster-based voting and hierarchical aggregation. Experimental results demonstrated 20% lower PSA, 30% reduced FR, and 8% faster consensus time compared to ePoS. Throughput improved to 296 TPS while reducing CPU and memory utilization, ensuring robust performance for resource-constrained IoT networks. The novelty of this work lies in the tailored enhancements to the PoS framework, specifically designed for IoT constraints, making EePoS a scalable, energy-efficient, and secure solution for IoT blockchain integration.Abstract
How to Cite
Downloads
Similar Articles
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- D. Selvaraj, A study on sustainable technology development of fintech 5.0 in Indian industries , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Jabeen, AR Mohamed Shanavas, Bradley Terry Brownboost and Lemke flower pollinated resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

