Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.30Keywords:
Degree attestation, Blockchain, Data encryption, Smart contract, Hash-based message authentication code, Elliptic curve cryptography, Higher education credentials.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The process of rendering authenticity to the Degree Certificate (DC) is known as Degree Attestation (DA). None of the prevailing works have focused on zero trust-based DA, verification, and traceability for secured DA. So, zero trust-based secured DA, verification, and traceability of degree credentials are presented in the paper. Primarily, to upload the DC of the student, the university registers and logs in to the Blockchain (BC). Subsequently, by utilizing radioactive decay-based elliptic curve cryptography (RD-ECC), the DC is secured. Next, by utilizing Glorot initialization-based Proof-of-Stake (GPoS), the data is stored in the BC. Further, to verify the traceability of the data, a Smart Contract (SC) is created. In the meantime, the student registers and logs in to the BC and gives attestation requests to the university. By utilizing rail fence cipher (RFC) RD-ECC hash-based message authentication code (RFCR-HMAC), the university authenticates the request. By utilizing a quadratic probing-based digital signature algorithm (QP-DSA), the university attests the DC after authentication. Lastly, by utilizing RD-ECC, the attested certificate is encrypted and sent to the student. Hence, the certificate is secured with an encryption time (ET) of 5971ms and DA is performed with a Signature Generation Time (SGT) of 6637ms.Abstract
How to Cite
Downloads
Similar Articles
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Bayelign Abebe, Ayalew Ali, Linking globalization to commercial banks’ performance in Ethiopia , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

