Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.30Keywords:
Degree attestation, Blockchain, Data encryption, Smart contract, Hash-based message authentication code, Elliptic curve cryptography, Higher education credentials.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The process of rendering authenticity to the Degree Certificate (DC) is known as Degree Attestation (DA). None of the prevailing works have focused on zero trust-based DA, verification, and traceability for secured DA. So, zero trust-based secured DA, verification, and traceability of degree credentials are presented in the paper. Primarily, to upload the DC of the student, the university registers and logs in to the Blockchain (BC). Subsequently, by utilizing radioactive decay-based elliptic curve cryptography (RD-ECC), the DC is secured. Next, by utilizing Glorot initialization-based Proof-of-Stake (GPoS), the data is stored in the BC. Further, to verify the traceability of the data, a Smart Contract (SC) is created. In the meantime, the student registers and logs in to the BC and gives attestation requests to the university. By utilizing rail fence cipher (RFC) RD-ECC hash-based message authentication code (RFCR-HMAC), the university authenticates the request. By utilizing a quadratic probing-based digital signature algorithm (QP-DSA), the university attests the DC after authentication. Lastly, by utilizing RD-ECC, the attested certificate is encrypted and sent to the student. Hence, the certificate is secured with an encryption time (ET) of 5971ms and DA is performed with a Signature Generation Time (SGT) of 6637ms.Abstract
How to Cite
Downloads
Similar Articles
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sandip Sane, Diksha Tripathi, Nitin Ranjan, Digital transformation in management education: Bridging theory and practice , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Evaluating the effectiveness of the Gyankunj Project: Teachers’ perceptions from Gujarat , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rama Shankar Dubey, M.A. Naidu, Ajay Kumar Shukla, Awadhesh Kumar Shukla, Manish Kumar, Sonia Verma, Pramod Kumar Mourya, Application of Bioactive Molecules in the Treatment and Management of Type-1 Diabetic Disease , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.