Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.30Keywords:
Degree attestation, Blockchain, Data encryption, Smart contract, Hash-based message authentication code, Elliptic curve cryptography, Higher education credentials.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The process of rendering authenticity to the Degree Certificate (DC) is known as Degree Attestation (DA). None of the prevailing works have focused on zero trust-based DA, verification, and traceability for secured DA. So, zero trust-based secured DA, verification, and traceability of degree credentials are presented in the paper. Primarily, to upload the DC of the student, the university registers and logs in to the Blockchain (BC). Subsequently, by utilizing radioactive decay-based elliptic curve cryptography (RD-ECC), the DC is secured. Next, by utilizing Glorot initialization-based Proof-of-Stake (GPoS), the data is stored in the BC. Further, to verify the traceability of the data, a Smart Contract (SC) is created. In the meantime, the student registers and logs in to the BC and gives attestation requests to the university. By utilizing rail fence cipher (RFC) RD-ECC hash-based message authentication code (RFCR-HMAC), the university authenticates the request. By utilizing a quadratic probing-based digital signature algorithm (QP-DSA), the university attests the DC after authentication. Lastly, by utilizing RD-ECC, the attested certificate is encrypted and sent to the student. Hence, the certificate is secured with an encryption time (ET) of 5971ms and DA is performed with a Signature Generation Time (SGT) of 6637ms.Abstract
How to Cite
Downloads
Similar Articles
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Neha R. Kshatriya, Preeti Nair, Social work students’ views on competencies in human resources , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Archana Bansal, On the Biology of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priydarshi Shireesh, Tiwari Atul Kumar, Singh Prashant, Rai Kumud, Mishra Dev Brat, Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.