A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.37Keywords:
Blockchain, Dynamic Hunting Leadership, Smart Healthcare, Disease Detection, Deep Learning, Feature ExtractorDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The healthcare sector has embraced a digital revolution driven by modern technology. Smart healthcare solutions improve patient care by addressing the challenges of traditional methods using large-scale sensor devices. Blockchain (BC) technology ensures secure, decentralized storage and sharing of medical data, fostering intelligent healthcare ecosystems. Robotics and machine learning (ML) also benefit from shared medical data. This manuscript introduces a blockchain-integrated smart healthcare framework utilizing a dynamic hunting leadership algorithm for deep learning-based disease detection and classification (BSHDHL-DLDDC). It focuses on accurate disease diagnosis using deep learning on medical images. BC technology enables secure, tamper-proof storage and privacy-compliant data sharing. Adaptive bilateral filtering (ABF) reduces noise while preserving key image details. An enhanced CapsNet model captures spatial relationships for improved feature extraction. A bi-directional gated recurrent unit (BiGRU) classifier detects and classifies diseases, with performance refined via a dynamic hunting leadership (DHL) algorithm. Simulations confirm the framework’s effectiveness, demonstrating better results compared to existing methods.Abstract
How to Cite
Downloads
Similar Articles
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- S Prabhakaran, Yugeshkrishnan M, Santhiya M, Danush Kumar S M, Smart Dustbin using IOT , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sandip Sane, Diksha Tripathi, Nitin Ranjan, Digital transformation in management education: Bridging theory and practice , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.

