A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.37Keywords:
Blockchain, Dynamic Hunting Leadership, Smart Healthcare, Disease Detection, Deep Learning, Feature ExtractorDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The healthcare sector has embraced a digital revolution driven by modern technology. Smart healthcare solutions improve patient care by addressing the challenges of traditional methods using large-scale sensor devices. Blockchain (BC) technology ensures secure, decentralized storage and sharing of medical data, fostering intelligent healthcare ecosystems. Robotics and machine learning (ML) also benefit from shared medical data. This manuscript introduces a blockchain-integrated smart healthcare framework utilizing a dynamic hunting leadership algorithm for deep learning-based disease detection and classification (BSHDHL-DLDDC). It focuses on accurate disease diagnosis using deep learning on medical images. BC technology enables secure, tamper-proof storage and privacy-compliant data sharing. Adaptive bilateral filtering (ABF) reduces noise while preserving key image details. An enhanced CapsNet model captures spatial relationships for improved feature extraction. A bi-directional gated recurrent unit (BiGRU) classifier detects and classifies diseases, with performance refined via a dynamic hunting leadership (DHL) algorithm. Simulations confirm the framework’s effectiveness, demonstrating better results compared to existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- G. S. Singh, S. S. Rath, S. S. Singh, EFFECT OF NUMBER OF FEEDING ON DISEASE INCIDENCE IN TASR SILKWORM, ANTHERAEA MYLITTA D. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Neeshma Jaiswal, Anshu Malhotra, Sandeep K. Malhotra, PREDICTATIVE HYPOTHESIS FOR PARASITE DISEASE OUTBREAKS OF ANISAKID NEMATODES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- SOBTI R.C., KIRTIPAL N., THAKUR H., JANMEJA A.K., POLYMORPHISM IN INTERLEUKIN-4 GENE AND THE RISK OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE IN A NORTH INDIAN POPULATION : A CASE-CONTROL STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Meera Yadav, F. D. Yadav, Effect of TLCV on Metabolic Parameter and Yield of Tomato , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.