
Abstract
The healthcare sector has embraced a digital revolution driven by modern technology. Smart healthcare solutions improve patient care by 
addressing the challenges of traditional methods using large-scale sensor devices. Blockchain (BC) technology ensures secure, decentralized 
storage and sharing of medical data, fostering intelligent healthcare ecosystems. Robotics and machine learning (ML) also benefit from 
shared medical data. This manuscript introduces a blockchain-integrated smart healthcare framework utilizing a dynamic hunting leadership 
algorithm for deep learning-based disease detection and classification (BSHDHL-DLDDC). It focuses on accurate disease diagnosis using deep 
learning on medical images. BC technology enables secure, tamper-proof storage and privacy-compliant data sharing. Adaptive bilateral 
filtering (ABF) reduces noise while preserving key image details. An enhanced CapsNet model captures spatial relationships for improved 
feature extraction. A bi-directional gated recurrent unit (BiGRU) classifier detects and classifies diseases, with performance refined via a 
dynamic hunting leadership (DHL) algorithm. Simulations confirm the framework’s effectiveness, demonstrating better results compared 
to existing methods.
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Introduction
Smart healthcare is the progress of typical healthcare with 
modern internet technologies. It incorporates various 
technologies to process health-related data collected 
from patients using smart wearable devices and to detect 
health issues in real time from the gathered information 
(U. Bodkhe, P. Bhattacharya, S. Tanwar, S. Tyagi, N. Kumar, 
and M. Obaidat 2019). This involves leveraging spreads in 
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the internet and communication structure with big data 
technologies to deliver telemedical patient-centered 
maintenance. A significant fragment of health and medical 
services is the usage of medical images at dissimilar phases 
of disease analysis, management, and treatment (I. Mistry, S. 
Tanwar, S. Tyagi, and N. Kumar, 2020). In this method, medical 
images are kept, conveyed, and analyzed to aid clinicians 
and other professionals on different sides of patient care. 
This efficacy has made medical images and other electronic 
health records (EHR) the target of ill-treatment, forbidden 
tampering, and other criminal actions (Nouman, A. and 
Muneer, S., 2022). Therefore, medical images are very vital 
for effectual patient care, and attempts to safeguard their 
confidentiality, integrity, and availability (CIA) earn every 
support (V, Nyemeesha., Kavitha, M. Skin Lesion 2024). The 
healthcare sector has developed by expanding the usage of 
novel technologies like the Internet of Things (IoT), machine 
learning (ML), and blockchain (BC) technology. BC can have 
a superior impact on the medical research area of healthcare 
since BC permits for sharing, storing, and tracking of data 
(Lobo, V.B., Analin, J., Laban, R.M. and More, S.S., March 2020). 
This BC method can upsurge the credibility of medical 
studies, which has been frequently smeared owing to 
numerous scandals (Anand, R., Kareem, S.F., Mubeen, R.M.A., 
Ramesh, S. and Vignesh, B., October, 2021). At present, 
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BC technique has shown an effectual solution to attain 
computation efficiencyand higher security when equated 
to the traditional cryptography solution for cloud data 
processing. So, BC has become a critical technology for 
developing healthcare 4.0 standards (S. Tanwar, K. Parekh, 
and R. Evans 2020). In the field of healthcare, a delicate 
changeover is arising, stimulated by electronic health record 
(EHR) methods, real medicinal data-collecting through 
wearable entities, artificial intelligence (AI), and enlarged 
data understanding. A better solution to these issues 
derives from the execution of BC, permitting transactions 
through decentralization. The complex method of the 
healthcare industry poses further challenges to executing 
BC technology (C.-Y. Li, X.-B. Chen, Y.-L. Chen, Y.-Y. Hou, 
and J. Li 2019). Medical sensors and devices gather a vast 
volume of data, which are employed in order to categorize 
and predict diseases in healthcare depending upon ML 
methods. Furthermore, systems based on ML are trained 
utilizing big data to help healthcare employees in risk 
treatment and assessment. These methods remove the 
human component from the method, decreasing errors (S. 
Shamshad, Minahil, K. Mahmood, S. Kumari, and C.-M. Chen 
2020). The incorporation of ML with IoT devices enables the 
management, analysis, and monitoring of medical reports. 
The IoT-enabled applications that combine BC technologies 
with ML techniques can aid in infectious illness tracking 
and drug traceability (H. Huang, P. Zhu, F. Xiao, X. Sun, and 
Q. Huang 2020). This manuscript focuses on the design and 
development of a blockchain-integrated smart healthcare 
framework utilizing a dynamic hunting leadership algorithm 
for deep learning-based disease detection and classification 
(BSHDHL-DLDDC) model. To accomplish this, the BSHDHL-
DLDDC technique applies an adaptive bilateral filtering 
(ABF) approach to effectively reduce noise while preserving 
important edges and details in medical images. For the 
feature extractor process, the improved CapsNet model can 
be employed, capturing intricate spatial relationships within 
the images to enhance diagnostic precision. In addition, 
the bi-directional gated recurrent unit (BiGRU) classifier 
is performed to detect and classify disease. To improve 
the classification performance of the BiGRU classifier, the 
parameter tuning process is performed through a dynamic 
hunting leadership (DHL) algorithm. A wide range of 
simulation studies is carried out to ensure the implication 
of the BSHDHL-DLDDC technique.

Related Works
In (Gajndran, S., Muthusamy, R., Ravi, K., Chandraumakantham, 
O. and Marappan, S, (2024)), a new elliptic crypt with a 
secured BC-backed federated Q-learning framework has 
been introduced. Primarily, the IoMT data was gathered 
from openly accessible databases and encrypted with the 
extended elliptic curve cryptography (E_ECC) approach to 
guarantee safety. These encoded data are provided for the 

input to the BC-powered cooperative learning approach. 
Next, the data was safely deposited in decentralized BC 
technologies. In (Albakri, A. and Alqahtani, Y.M. (2023)), 
an IoMT with a BC-based smart healthcare system with 
encryption by optimal DL (BSHS-EODL) approach was 
developed. 
 The introduced model contains image encryption, data 
collection, and data classification. Firstly, the IoMT tools allow 
the collection of data procedures, and the collected images 
are deposited in BC for safety. Next, image encryption 
has been utilized for data encryption, and its important 
generation model was carried out through the dingo 
optimizer algorithm (DOA). Lastly, the BSHS-EODL approach 
implements analysis of disease, including voting ELM (VELM), 
SqueezeNet, and Bayesian optimization (BO)-based tuning 
of the parameter. Mohammed  et al. Mohammed, M.A., 
Lakhan, A., Zebari, D.A., Abd Ghani, M.K., Marhoon, H.A., 
Abdulkareem, K.H., Nedoma, J. and Martinek, R., (2024) 
proposed a new Pattern-Proof Malware Validation (PoPMV) 
model intended for BC in ICPS. The work additionally uses a 
DL algorithm (LSTM) with reinforcement learning methods 
for receiving rewards and feedback in real-time. The major 
aim is to mitigate securities vulnerability, improve handling 
speed, recognize either unfamiliar or familiar attacks, and 
enhance the ICPS functionalities.

Li, J., Li, D. and Zhang, X., (2023) implemented a secured 
BC-helped access controller system for SHS in fog computing. 
Every user process are verified on the BC by smart contract to 
guarantee the reliability and transparency of the method. This 
paper moreover provided a BC-helped multi-authority attribute 
based encryption (MA-ABE) model using keyword search to 
ensure data confidentiality, preventing single failure points and 
performing fine-grained access control of the system. Chatterjee  
et al. Chatterjee, S., Bhattacharya, P. and De, D., (2024) introduced 
an architecture, LightDew, which utilizes the Dew Computing (DC) 
paradigm in Smart Assisted Living (SAL) environments. DC permits 
efficient communication, lower resource usage, and real-time 
decision-making abilities. Initially, at dew layer, a shallow neural 
network approach has been presented that is termed a lightweight 
activity recognition (LAR) algorithm. The LAR outputs are safely 
signed and hashed with the lightweight secp256k1 curve, which 
guarantees data authentication and integrity.

Raju et al. Raju, K., Ramshankar, N., Shathik, J.A. and 
Lavanya, R., (2023) developed a secure outsourcing system 
using a DL structure was implemented. Firstly, the healthcare 
data was gathered from the normal datasets, and this can 
be encoded with the optimal key-based hybrid ECC with 
fully homomorphic encryption (OK-HECCFHE). Formerly, 
the encoded data was deposited within the BC, and it 
becomes decoded by the proper user by the optimum key. 
Lastly, the healthcare data prediction has been completed 
through the Optimized DNN with GRU (ODNN-GRU). In 
Govindaram, A. and Jegatheesan, A., (2024), a BC-aided 
deep federated learning (BC_DFL) model was applied 
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for detecting intruders. The three important processes 
utilized in the presented intrusion detection framework are 
intrusion detection, pre-processing, and data collection. 
Data reduction, normalization, transformation, and cleaning 
are applied in pre-processing to extract unimportant 
information and increase data quality. This pre-processed 
data has been directed to the BC_DFL model for intrusion 
detection.

Proposed Methodology
In this manuscript, we focus on the design and development 
of the BSHDHL-DLDDC model. The main goal of the BSHDHL-
DLDDC method is to utilize deep learning techniques for 
accurate disease diagnosis from medical images. It contains 
four distinct kinds of processes illustrated in Figure 1. 

Blockchain in Smart Healthcare Systems 
The integration of BC technology ensures decentralized, 
tamper-proof storage of medical records, allowing secure 
sharing between healthcare providers while retaining 
patient privacy. A lot of efforts were completed attempt to 
discover a balance between data privacy and the necessity 
for providers and patients to utilize these delicate data 
for several reasons Healthcare Engineering, J.O., 2023. In 
Particular, with the extensive usage of the IoT in EHRs, it 
turns out to be simpler to gather data from various sources 
on multiple metrics at single positions.

To attain this, we use smart contracts in an ethereum-
based BC to control admittance to complex information 
of patients and a progressive cryptography approach to 
guarantee safety. Based on the authors, the execution 
of this solution will permit patients to control their EHRs, 
whereas healthcare organizations may utilize the sensitive 
data of patients suitably without revealing their privacy. 
After a similar philosophy, a framework concentrating on 
healthcare IoT has been recommended. Over the acceptance 
of BC and cryptographic models for ensuring privacy, the 
main particularities of these solutions are that sensitive 
information has been managed within the hospital whereas 
accessing was accomplished depending on the part of users. 
Moreover, to offer transparency in healthcare activities, 
smart contracts have been applied for recording each 
event. In this context, the authors presented a BC-based and 
privacy-preserving system named Healthchain, permitting 
patients to efficiently control admission to their data by 
adding or canceling approved physicians by utilizing user 
transactions for strategic management. Consequently, 
the authors presented a patient-centered medical data 
management method whereas the BC has been applied 
as storage to achieve privacy. Hence, we presented 
SmartMedChain, which contains ServiceChain, LogChain, 
and DataChain to attain protection of privacy concerning 
various ‐healthcare shareholders.

ABF based Image Pre-processing
Primarily, the BSHDHL-DLDDC technique applies an ABF 
approach to effectively reduce noise while preserving 
important edges and details in medical images. ABF is a 
vital pre-processing method in disease recognition in smart 
healthcare systems, particularly for the enhancement of the 
medical image Yu, H., He, F. and Pan, Y., 2020. It efficiently 
decreases noise while upholding significant features, like 
textures and edges, in imaging data. By altering the filtering 
parameters depending on local image features, this model 
certifies that major details that are vital for precise diagnosis 
are preserved. The enhanced image quality permits more 
consistent analysis and feature extraction, most important 
to better disease recognition outcomes. Eventually, ABF 
improves the performance of DL algorithms, enabling 
appropriate and precise medical decision-making.

Improved CapsNet Feature Extractor 
For the feature extractor process, the improved CapsNet 
model can be employed, capturing intricate spatial 
relationships within the images to enhance diagnostic 
precision. 

CapsNet is a new structure, which generates neurons 
united in a novel method of unit Wang, B., Wang, L., Xu, W., Ren, 
H. and Cheng, W., 2024. Every capsule has many neurons that 
can be encoded as activation vectors. The CapsNet structure 
was presented to learn numerous properties of signals, which 
can reflect the comparative location information among the 
discriminative features mined by the preceding convolution 

Figure 1: Overall process of BSHDHL-DLDDC model



The Scientific Temper. Vol. 15, No. 4 	 Lakshminarayani A and A Shaik Abdul Khadir	 3284

module. First, a dynamic routing mechanism was employed 
as routing‐by‐agreement among capsules to direct capsules 
to their match parent. In this mechanism, every preceding 
capsule layer is increased by a matrix of weight, and then 
every vector is biased by the coupling coefficient to acquire 
the existing outcome. Next, the coupling coefficient is 
iteratively advanced by evaluating the constancy among 
every prediction vector and present output for generating 
the final output vector. Presently, attention mechanisms 
have attained extraordinary achievement in numerous 
domains like speech recognition, image classification, 
NLP, and computer vision (CV). The attention mechanism 
pretends this attention of human distribution mechanism, by 
providing the capability to pay attention to input data, it can 
better comprehend and handle the data. The self-attention 
structure permits one to learn weights among capsules more 
intensely and evades the iterative routing control method. 
The improved CapsNet module contains dual layers, such 
as primary and digital capsule layers. In the primary capsule 
layer, the output of the preceding convolution module is 
initially redesigned and transformed into the method of 
capsules. To exemplify the self‐attention mechanism routing 
technique, let’s take a capsule vector in the digital capsule as 
an instance. Assume that the matrix of the primary capsule 
layer, which represents the amount of capsules, signifies the 
embedded vector in the capsule and means the dimensional. 
Initially, every capsule vector  is increased by a weight matrix  
to get prediction vectors: 

( )|                                                          1ˆ =j i ij iu W u

Here i 1, N, j 1, ,M,M= = …  represents the amount of capsules. In 
this paper, M 4=  . It is noticeable that N M×  distinct weight 
matrices are employed. The matrix  is linearly altered to get 
key (K) and query (Q). They are mathematically modeled 
below:

( )                                                    2×= ∈Q N PQ UW 

( )                                                   3×= ∈K N PK UW 

Here ×∈Q N P
jW   and ×∈K N P

jW   and  are matrices of dimensional 
parameters. Next, the dot product is used over Q and K 
for evaluating the relationship, and the outcome is passed 
done a softmax function to get the attention weights. It is 
mathematically expressed below:
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While, ×∈ N NA   refers to an attention weight matrix. 
Then, the matrix of attention score is weighted on 
“prediction vector matrix” |1 |2 | |
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dot product and totalled to make the  capsule. This 
stage is expressed below:
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Here, jv  indicates the likelihood of its corresponding class.

Classification using BiGRU Model
In addition, the BiGRU classifier is performed to detect and 
classify disease. The GRU is a kind of recurrent neural network 
(RNN), which utilizes a gating mechanism to choose what 
data passes to the output, thus extracting out irrelevant 
data Mao, R., Lee, J.E. and Edwards, M.C., 2024. Standard 
RNNs experience the problem of vanishing gradient, where 
the inclines of the loss function become near zero and are 
back-propagated over the neural networks. GRUs can evade 
this problem by utilizing reset and update gates to control 
the flow of data, permitting them to acquire long‐term 
time dependencies. GRUs are speedier than LSTMs in low-
difficulty sequences.

The reset gate defines how much data from the historical 
hidden layer (HL) must be forgotten. It outputs a value 
among  and 1, where  indicates forg et all and 1 means 
recollect all. The output is employed in order to define a 
candidate HL, or the novel information. The update gate 
governs how much weight to adorn past HL and how much 
weight to adorn candidate HL. It outputs a number between  
and 1, where  means putting each weight on the preceding 
HL, and 1 states that it puts each weight on the candidate 
HL. The typical GRU  formulations were expressed as follows:
	

( ) ( ) ( )1      7−= + +t r t r t rr sigmoid W x U h b Reset gate
( ) ( ) ( )1                                             8−= + +t z t z t zz sigmoid W x U h b Update gate

( )( )( ) ( )1                                          9ˆ
−= + +t h t h t t hh tanh W x U r h b Candidate HL

( ) ( ) ( )11                                         10ˆ
−= − + t t t t th z h z h Updated HL

For this neural network, the trainable parameters are . In 
addition to the typical GRU, theBiGRU improves the model’s 
capability to arrest context from both future and past states. 
Dual separate GRU layers are employed in the BiGRU layer: 
one handles an input sequence in a forward direction, while 
the other processes it backward.
	

( )( ) ( )1  ,                                                      11−=
 

t f t th GRU x h Forward

( )( ) ( )1,                                                 12+=
 

t b t th GRU x h Backward

( ) ( );                                      13 =  
 

bi
t t th h h Combined BiGRU output
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This structure permits the system to use data from both 
directions, enhancing performance on tasks that profit from 
realization of the time dependence near every input. Figure  
2 depicts the structure of BiGRU.

Hyperparameter Tuning Process
To improve the classification performance of the BiGRU 
classifier, the parameter tuning process is performed 
through DHL algorithm. 

Social Hierarchy
In the DHL algorithm, the social hierarchy is explained by 
presenting dual variables  and  to signify the amount of 
leaders a hunter evaluates for location upgrades and the 
total volume of hunters, correspondingly Adegboye, O.R., 
Feda, A.K., Ojekemi, O.S., Agyekum, E.B., Elattar, E.E. and 
Kamel, S., 2024. The efficiency of every hunter’s solution 
is taken into consideration when choosing the leaders. 
Particularly, till every  leaders are selected, the hunter 
with the finest fitness value is nominated as the 1st leader, 
followed by the predator with the 2nd‐excellent fitness 
value, and many. In the hunting, every hunter’s position 
vector is set by , and  means an objective value, which 
specifies the hunter’s proximity to the most susceptible 
prey. and  signify the locations of a leader and the prey. The 
leaders are classified on how close they are to the victim, 
with the finest leaders being those who are closest to the 
objective.

Hunting Process Of A Prey
Generally, hunters use to encircle some prey, and every 
targeted prey resembles to problem’s local goals. The 
mathematical formulation of the encircling method is 
mentioned below:

( ) ( )it 1 p 1 p2 1 2.                                                 14µ+ = − ⋅ ⋅ − ⋅ −
   



itX X r r X X

( ) ( )2
2                                                   15

Max
µ

−

⋅
= −

it
it

Here,  means a current iteration, represents the maximum 
iteration count,  refers to the location of prey and indicates 
thehunterposition. aids in imitating the actions of attacking 
prey, and its value falls linearly from 2 to  across iterations. 
and  are chosen vectors at random from the range of and, 
correspondingly, that can certainly affect the exploration 
stage. If the global optimum is not recognized, the locations 
of prey  in Eq. (14) are swapped by every leader’s location  
because it is supposed that the leaders are next to the 
position of prey in the search area. Then, the locations of 
the remaining hunters  will be upgraded by considering 
the position of leader with the below-mentioned Eq. (16):

( )( )
( )

i i
l,it 1 2 l,it it1

 2 1  
                         16

µ
=

− ⋅ ⋅ − ⋅ ⋅ −
=
∑

  

 



lN

i

l

X r r X X
X

N

 

Here, mean a vector signifying the position of the  leader 
between the group of leaders, and  shows that a vector 
represents the location of a hunter. When the iteration rises, 
the group of hunters is upgraded near the leader’s closet 
to the prey.

Exploration And Exploitation Phases
In the exploration stage, the hunters’ main objective is 
to fully explore the hunting area and discover the most 
susceptible prey. The number of leaders is set as a greater 
amount. In exploitation, the major aim is to firmly encircle 
weak prey and add other predators to the ring. The group of 
leaders is decreased from to one and only leader by utilizing 
an exponential function utilizing Eq. 4. Which means the 
number of hunters. DHL has a robust exploitation stage and 
the exponential function used is below the given formula.
 

( )

1ln
exp                                                   17

Max

  
⋅  

  = ⋅  
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h
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The fitness choice is a major feature in managing the 
efficiency of DHL methodology. The parameter choice 
comprises the encoded model to calculate the effectiveness 
of candidate outcomes. For this paper, the DHL approach 
supposes accuracy as the most important criterion to make 
the fitness function (FF). 

( ) ( )  max                                                         18=Fitness P

( )                                                                  19=
+

TPP
TP FP

Here, TP and FP illustrate the true and false positive ratio.

Performance Validation
In this section, the performance validation of the BSHDHL-
DLDDC model is examined using on ISIC 2017 dataset https://Figure 2: Architecture of BiGRU
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challenge.isic-archive.com/data/. The dataset contains 318 
samples with 7 classes, are demonstrated in Table 1.

Figure 3 displays the classifier outcomes of the BSHDHL-
DLDDC model on the test dataset. Figures. 3a-3b exhibitions 
the confusion matrices with precise identification and 
classification of all class labels on a 70:30 TRASE/TESSE. 
Figure 3c presents the PR analysis, signifying maximum 
performance over all 7 classes. Eventually, Figure 3d 
describes the ROC analysis, displaying ability results with 
high ROC values for distinct 7 classes.

In Table 2 and Figure 4, the global detection outcomes 
of the BSHDHL-DLDDC algorithm are clearly displayed. The 
table values represented that the BSHDHL-DLDDC system 
is able to find the samples proficiently. On 70%TRASE, the 
BSHDHL-DLDDC technique attains average yaccu , ysens , 

yspec , 1scoreF and MCC of 98.97, 95.11, 99.37, 95.93, and 95.42%. 
Moreover, on 30% TESSE, the BSHDHL-DLDDC methodology 
attains average yaccu , ysens , yspec , 1scoreF  , and MCC of 
98.81, 94.20, 99.28, 95.12, and 94.51%.

In Figure 5, the TRA  (TRAAY) and validation  (VLAAY) 
outcomes of the BSHDHL-DLDDC method are illustrated. 
The values are determined in a range of 0-30 epochs. The 
figure highlighted that the TRAAY and VLAAY values exhibit 
a tendency to increase which apprised the ability of the 
BSHDHL-DLDDC approach with better performance over 
a multitude of iterations. Moreover, the TRAAY and VLAAY 
remain firm above the epochs, which states slight overfitting 
and presents superior functioning of the BSHDHL-DLDDC 
system, securing constant anticipation on hidden samples.

In Figure 6, the TRA loss (TRALO) and VLA loss (VLALO) 
outcome of the BSHDHL-DLDDC algorithm is displayed. The 
loss values are computed over an interval of 0-30 epochs. 
It is depicted that the TRALO and VLALO values interpret 
a tendency to decrease, which reported the ability of the 
BSHDHL-DLDDC approach to compensate for a concession 
between data fitting and generalization. The consecutive 
dilution in loss values further assurances the better 
performance of the BSHDHL-DLDDC system and tunes the 
prediction results over time.
In Table 3, the overall comparison study of the BSHDHL-
DLDDC methodology is precisely revealed Albakri, A. and 

Table 1: Details of dataset 

Class Labels No. of Samples

“Angioma” 21

“Nevus” 46

“Lentigo NOS” 41

“Solar Lentigo” 68

“Melanoma” 51

“Seborrheic Keratosis” 54

“BCC” 37

Total count of Samples 318

Figure 3: (a-b) Confusion matrices of 70:30 TRASE/TESSE and (c-d) PR 
and ROC analysis

Table 2: Overall detection of BSHDHL-DLDDC technique with 70:30 
TRASE/TESSE

Class Labels
yAccu

ySens ySpec ScoreF1 MCC

TRASE (70%)

Angioma 98.65 81.25 100.00 89.66 89.49

Nevus 99.10 100.00 98.93 97.22 96.74

Lentigo NOS 100.00 100.00 100.00 100.00 100.00

Solar Lentigo 99.10 100.00 98.87 97.83 97.29

Melanoma 99.55 96.88 100.00 98.41 98.17

Seborrheic 
Keratosis 97.75 95.35 98.32 94.25 92.86

BCC 98.65 92.31 99.49 94.12 93.38

Average 98.97 95.11 99.37 95.93 95.42

TESSE (30%)

Angioma 98.96 80.00 100.00 88.89 88.96

Nevus 100.00 100.00 100.00 100.00 100.00

Lentigo NOS 97.92 93.75 98.75 93.75 92.50

Solar Lentigo 100.00 100.00 100.00 100.00 100.00

Melanoma 96.88 94.74 97.40 92.31 90.40

Seborrheic 
Keratosis 97.92 90.91 98.82 90.91 89.73

BCC 100.00 100.00 100.00 100.00 100.00

Average 98.81 94.20 99.28 95.12 94.51

Alqahtani, Y.M., 2023. Figure 7 reports the  inquisition of the 
BSHDHL-DLDDC technique. The results expressed that the 
VGG19 model has shown unavailing detection results with 
the least  of 91.34%. In the meantime, the DBN and YOLO-GC 
algorithms have presented somewhat higher performances 
with  of 94.30% and 94.37%. Also, the ResNet, CDNN, and 
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Figure 4: Average of BSHDHL-DLDDC technique with 70:30 TRASE/
TESSE

Figure 5: yAccu  curve of the BSHDHL-DLDDC technique

Figure 6: Loss curve of the BSHDHL DLDDC technique−

Table 3 Comparative study of BSHDHL-DLDDC technique with other existing 
classifiers  

Methods yAccu ySens ySpec

BSHDHL-DLDDC 98.97 95.11 99.37

BSHS-EODL 98.62 93.12 99.25

DBN Algorithm 94.30 91.54 91.12

YOLO-GC Model 94.37 89.43 90.90

ResNet Methodology 96.31 90.58 91.18

VGG19 Model 91.34 90.31 93.84

CDNN Classifier 95.42 91.33 92.89

Figure 7: yAccu  analysis of BSHDHL-DLDDC technique with other 
existing classifiers

Figure 8: ySens  and yspec  outcomes of BSHDHL-DLDDC 
technique with other existing classifiers

BSHS-EODL models have proficient reasonable outcomes 
with  of 96.31%, 95.42%, and 98.62%. Lastly, the BSHDHL-
DLDDC technique establishes outstanding performance 
with increased of 98.97%.
Figure 8 evaluates the comparative and outcomes of the 
BSHDHL-DLDDC technique. The results described that 

the BSHDHL-DLDDC system attained better performance. 
According to, the BSHDHL-DLDDC algorithm provides higher 
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of 95.11% while the BSHS-EODL, DBN, YOLO-GC, ResNet, 
VGG19, and CDNN methods offer inferior of 93.12, 91.54, 
89.43, 90.58, 90.31, and 91.33%, respectively. Additionally, 
derived from, the BSHDHL-DLDDC model advances higher 
of 99.37% while the BSHS-EODL, DBN, YOLO-GC, ResNet, 
VGG19, and CDNN techniques achieve a minimum of 99.25, 
91.12, 90.90, 91.18, 93.84%, and 92.89%, correspondingly.

Results
The study presents the design and development of the 
BSHDHL-DLDDC model, which combines deep learning and 
blockchain technologies to enhance disease diagnosis using 
medical images. Key results include:

Noise Reduction
The adaptive bilateral filtering (ABF) method effectively 
reduces noise in medical images while preserving critical 
edges and details.

Feature Extraction
The enhanced CapsNet model captures intricate spatial 
relationships in the images, significantly improving 
diagnostic precision.

Disease Classification
The BiGRU classifier successfully detects and classifies 
diseases.

Optimization
The dynamic hawk learning (DHL) algorithm fine-tunes 
the parameters of the BiGRU classifier, further enhancing 
classification performance.

Secure Data Management
The integration of blockchain technology ensures secure, 
decentralized, and tamper-proof storage of medical records, 
enabling secure data sharing without compromising patient 
privacy.

Comparison Studies: Simulation results demonstrate 
the superior performance of the BSHDHL-DLDDC model 
compared to existing methods, indicating its reliability and 
efficacy in medical image analysis.

Discussions
The BSHDHL-DLDDC model represents a significant 
advancement in medical image-based disease diagnosis, 
offering a robust, secure, and precise solution.

The integration of blockchain addresses critical 
challenges in healthcare, such as secure data sharing and 
privacy preservation, while simultaneously providing 
decentralized and immutable record storage.
The ABF method proves instrumental in pre-processing 
medical images, highlighting its role in improving 
downstream feature extraction and classification tasks.

The improved CapsNet model and BiGRU classifier 

leverage deep learning to achieve high accuracy in disease 
detection and classification, emphasizing their suitability 
for medical applications.

The application of the DHL algorithm in parameter 
optimization underscores the importance of advanced 
optimization techniques in enhancing model performance.

Comparative analysis with existing approaches 
underscores the potential of BSHDHL-DLDDC in real-world 
healthcare scenarios, offering higher accuracy and reliability.

Future studies could explore the scalability of the model 
across diverse datasets, including rare or complex disease 
categories, and assess its integration into existing healthcare 
workflows.

In conclusion, the BSHDHL-DLDDC model paves the way 
for next-generation diagnostic tools, combining the power 
of deep learning and blockchain to address contemporary 
challenges in medical image analysis and secure healthcare 
data management.

Conclusion
In this manuscript, we focus on the design and development 
of the BSHDHL-DLDDC model. The main goal of the BSHDHL-
DLDDC method is to utilize deep learning techniques for 
accurate disease diagnosis from medical images.

To accomplish this, the integration of blockchain (BC) 
technology ensures decentralized, tamper-proof storage 
of medical records, allowing secure sharing between 
healthcare providers while retaining patient privacy.

Primarily, the BSHDHL-DLDDC technique applies an 
adaptive bilateral filtering (ABF) approach to effectively 
reduce noise while preserving important edges and details 
in medical images.

For the feature extractor process, the improved CapsNet 
model can be employed, capturing intricate spatial 
relationships within the images to enhance diagnostic 
precision.

In addition, the BiGRU classifier is performed to 
detect and classify diseases. To improve the classification 
performance of the BiGRU classifier, the parameter tuning 
process is performed through the Dynamic Hunting 
Leadership (DHL) algorithm.

A wide range of simulation studies is carried out to 
ensure the effectiveness of the BSHDHL-DLDDC technique. 
A comparison outcome highlighted the promising results of 
the BSHDHL-DLDDC approach over other existing methods.
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