A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.37Keywords:
Blockchain, Dynamic Hunting Leadership, Smart Healthcare, Disease Detection, Deep Learning, Feature ExtractorDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The healthcare sector has embraced a digital revolution driven by modern technology. Smart healthcare solutions improve patient care by addressing the challenges of traditional methods using large-scale sensor devices. Blockchain (BC) technology ensures secure, decentralized storage and sharing of medical data, fostering intelligent healthcare ecosystems. Robotics and machine learning (ML) also benefit from shared medical data. This manuscript introduces a blockchain-integrated smart healthcare framework utilizing a dynamic hunting leadership algorithm for deep learning-based disease detection and classification (BSHDHL-DLDDC). It focuses on accurate disease diagnosis using deep learning on medical images. BC technology enables secure, tamper-proof storage and privacy-compliant data sharing. Adaptive bilateral filtering (ABF) reduces noise while preserving key image details. An enhanced CapsNet model captures spatial relationships for improved feature extraction. A bi-directional gated recurrent unit (BiGRU) classifier detects and classifies diseases, with performance refined via a dynamic hunting leadership (DHL) algorithm. Simulations confirm the framework’s effectiveness, demonstrating better results compared to existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pavithra M, Dr. R. Neelaveni, Muthuraman K. R , Kamalesh G, Design of an interactive smart band for intellectually disabled person , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.