A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.37Keywords:
Blockchain, Dynamic Hunting Leadership, Smart Healthcare, Disease Detection, Deep Learning, Feature ExtractorDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The healthcare sector has embraced a digital revolution driven by modern technology. Smart healthcare solutions improve patient care by addressing the challenges of traditional methods using large-scale sensor devices. Blockchain (BC) technology ensures secure, decentralized storage and sharing of medical data, fostering intelligent healthcare ecosystems. Robotics and machine learning (ML) also benefit from shared medical data. This manuscript introduces a blockchain-integrated smart healthcare framework utilizing a dynamic hunting leadership algorithm for deep learning-based disease detection and classification (BSHDHL-DLDDC). It focuses on accurate disease diagnosis using deep learning on medical images. BC technology enables secure, tamper-proof storage and privacy-compliant data sharing. Adaptive bilateral filtering (ABF) reduces noise while preserving key image details. An enhanced CapsNet model captures spatial relationships for improved feature extraction. A bi-directional gated recurrent unit (BiGRU) classifier detects and classifies diseases, with performance refined via a dynamic hunting leadership (DHL) algorithm. Simulations confirm the framework’s effectiveness, demonstrating better results compared to existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Tarannum ., Anuja Pandey, Arti Rauthan, An evaluation of the impact of lean management practices on patients’ satisfaction at a small healthcare facility , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.