Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.22Keywords:
Wireless sensor networks, Encryption technique, RC4, Directed acyclic graphs, Malicious node.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In wireless sensor networks (WSNs), ensuring secure data transmission while preventing malicious activity is a critical challenge. This paper presents a novel approach for the identification of malicious nodes in WSNs by integrating directed acyclic graphs (DAGs) with the RC4 encryption algorithm. DAGs are employed to establish a hierarchical structure that enables efficient data flow and tracking of communication patterns across the network. By utilizing DAGs, the system can monitor the consistency and integrity of data transmission, making it easier to detect anomalies caused by malicious nodes. The RC4 encryption algorithm further strengthens the approach by securing the communication between nodes, preventing unauthorized access and tampering. In combination, DAGs and RC4 provide a robust framework for both detecting malicious nodes and securing data exchanges. Experimental simulations demonstrate that the proposed approach enhances network security by identifying compromised nodes with high accuracy while maintaining efficient communication and low overhead. This method offers a scalable and secure solution for protecting WSNs from malicious threats.Abstract
How to Cite
Downloads
Similar Articles
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Gomathi, C. Radhika, A secure messaging application using steganography and AES encryption a dual-layer secure messaging system , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sharada C, T N Ravi, S Panneer Arokiara, Lancaster sliced regressive keyword extraction based semantic analytics on social media documents , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

