Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.22Keywords:
Wireless sensor networks, Encryption technique, RC4, Directed acyclic graphs, Malicious node.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In wireless sensor networks (WSNs), ensuring secure data transmission while preventing malicious activity is a critical challenge. This paper presents a novel approach for the identification of malicious nodes in WSNs by integrating directed acyclic graphs (DAGs) with the RC4 encryption algorithm. DAGs are employed to establish a hierarchical structure that enables efficient data flow and tracking of communication patterns across the network. By utilizing DAGs, the system can monitor the consistency and integrity of data transmission, making it easier to detect anomalies caused by malicious nodes. The RC4 encryption algorithm further strengthens the approach by securing the communication between nodes, preventing unauthorized access and tampering. In combination, DAGs and RC4 provide a robust framework for both detecting malicious nodes and securing data exchanges. Experimental simulations demonstrate that the proposed approach enhances network security by identifying compromised nodes with high accuracy while maintaining efficient communication and low overhead. This method offers a scalable and secure solution for protecting WSNs from malicious threats.Abstract
How to Cite
Downloads
Similar Articles
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- N Sasirekha, Jayakumar Karuppaiah, Yuvaraja Thangavel, KG Parthiban , Classification of mammograms by breast density , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Financial strategy and private commercial banks’ profitability in the emerging market: Evidence from Ethiopia , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sadhana Gaikwad, Rajvardhan, Overview on biased news reporting of Indian television with legal aspect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

