Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.22Keywords:
Wireless sensor networks, Encryption technique, RC4, Directed acyclic graphs, Malicious node.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In wireless sensor networks (WSNs), ensuring secure data transmission while preventing malicious activity is a critical challenge. This paper presents a novel approach for the identification of malicious nodes in WSNs by integrating directed acyclic graphs (DAGs) with the RC4 encryption algorithm. DAGs are employed to establish a hierarchical structure that enables efficient data flow and tracking of communication patterns across the network. By utilizing DAGs, the system can monitor the consistency and integrity of data transmission, making it easier to detect anomalies caused by malicious nodes. The RC4 encryption algorithm further strengthens the approach by securing the communication between nodes, preventing unauthorized access and tampering. In combination, DAGs and RC4 provide a robust framework for both detecting malicious nodes and securing data exchanges. Experimental simulations demonstrate that the proposed approach enhances network security by identifying compromised nodes with high accuracy while maintaining efficient communication and low overhead. This method offers a scalable and secure solution for protecting WSNs from malicious threats.Abstract
How to Cite
Downloads
Similar Articles
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kumari Sammy, Sumita Singh, Coefficient of absorption cross-section of RN black holes , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

