Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.22Keywords:
Wireless sensor networks, Encryption technique, RC4, Directed acyclic graphs, Malicious node.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In wireless sensor networks (WSNs), ensuring secure data transmission while preventing malicious activity is a critical challenge. This paper presents a novel approach for the identification of malicious nodes in WSNs by integrating directed acyclic graphs (DAGs) with the RC4 encryption algorithm. DAGs are employed to establish a hierarchical structure that enables efficient data flow and tracking of communication patterns across the network. By utilizing DAGs, the system can monitor the consistency and integrity of data transmission, making it easier to detect anomalies caused by malicious nodes. The RC4 encryption algorithm further strengthens the approach by securing the communication between nodes, preventing unauthorized access and tampering. In combination, DAGs and RC4 provide a robust framework for both detecting malicious nodes and securing data exchanges. Experimental simulations demonstrate that the proposed approach enhances network security by identifying compromised nodes with high accuracy while maintaining efficient communication and low overhead. This method offers a scalable and secure solution for protecting WSNs from malicious threats.Abstract
How to Cite
Downloads
Similar Articles
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Neha Saini, Rashmi Verma, Rabia Basri Aziz, Ashmita Bhatt, Hem Chandra Pant, Naveen Gaurav, Effect of Growth Regulators on Direct Clonal Propagation and Analysis of Total Phenolic Content of Wild and Propagated Mucuna pruriens , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Suresh Kumar, S.N.Md. Assarudeen, Solving neutrosophic multi-objective linear fractional programming problem using central measures , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper