Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.08Keywords:
Cloud computing, Virtual machine consolidation, Energy efficient, Optimization, Greedy selection, Genetic algorithm, VM migration.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud-based computing, despite its numerous benefits, frequently exerts a negative influence on the environment. The primary concern lies in the emission of greenhouse gases and the consumption of electricity by cloud data centers, which demands considerable scrutiny. Virtual machine consolidation (VM) is a widely adopted strategy aimed at achieving energy efficiency and maximizing resource utilization. The consolidation of VMs is a fundamental process in the development of a sophisticated cloud resource management system that prioritizes energy efficiency. The underlying premise is that by shifting VMs onto a reduced number of physical machines, it is possible to achieve optimization objectives, increase the utilization of cloud servers, and concurrently decrease energy consumption in cloud data centers. This proposed solution utilizes the best fit decrease (BFD) approach for VM allocation. An enhanced Greedy selection approach is proposed for VM migration, utilizing the Genetic method optimization method.Abstract
How to Cite
Downloads
Similar Articles
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Aditi Sharma, Atal Bihari Bajpai, Naina Srivastava, Yunus Ali, Anjali Thapa, Naveen Gaurav, Arun Kumar, Effect of Growth Regulators and in vitro Clonal Propagation of Adhatoda vasica , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Hariini Chandramohan, Sethu Gunasekaran, Comparative analysis on the photocatalytic activity of titania and silica nanoparticles using dye discoloration and contact angle test , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Desai Vishesh, Ritesh Patel, Assessing the influence of tax refunds and incentives on personal tax Reporting: A qualitative perspective , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 30 31 32 33 34 35 36 37 38 > >>
You may also start an advanced similarity search for this article.

