Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.08Keywords:
Cloud computing, Virtual machine consolidation, Energy efficient, Optimization, Greedy selection, Genetic algorithm, VM migration.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud-based computing, despite its numerous benefits, frequently exerts a negative influence on the environment. The primary concern lies in the emission of greenhouse gases and the consumption of electricity by cloud data centers, which demands considerable scrutiny. Virtual machine consolidation (VM) is a widely adopted strategy aimed at achieving energy efficiency and maximizing resource utilization. The consolidation of VMs is a fundamental process in the development of a sophisticated cloud resource management system that prioritizes energy efficiency. The underlying premise is that by shifting VMs onto a reduced number of physical machines, it is possible to achieve optimization objectives, increase the utilization of cloud servers, and concurrently decrease energy consumption in cloud data centers. This proposed solution utilizes the best fit decrease (BFD) approach for VM allocation. An enhanced Greedy selection approach is proposed for VM migration, utilizing the Genetic method optimization method.Abstract
How to Cite
Downloads
Similar Articles
- Veena Pande, Manish Pande, MOLECULAR DIVERSITY OF ECTOMYCORRHIZAL FUNGI OF CENTRAL HIMALAYA OF INDIA: AN IMPORTANT COMPONENT OF FOREST ECOSYSTEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Sirajum Munira Priety, Farhan Bin Manjur, AI Driven Approach in Smart Manufacturing in Bangladesh , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Merla Agnes Mary, Britto Ramesh Kumar, Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Shapali Devi, Sadguru Prakash, Ravindra Pratap Singh, Rahul Singh, Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Ranjeet Kaur, P N Tripathi, Comparative Study on SARS-CoV-2 Variants , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Shashank Suman, Prashant Kumar, Seasonal Estimation in Primary Productivity of Akilpur Lake in Dighwara, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Manisha Pallvi, Carlson’s Trophic State Index of Shatiya Wetland in Gopalganj District of Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A vendor-constrained economic production quantity model integrating scrap recovery under sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
<< < 25 26 27 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.

