Dynamic resource allocation with otpimization techniques for qos in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.06Keywords:
Cloud computing, quality of service, Optimization techniques, Dynamic resource allocation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ensuring the quality of service (QoS) in cloud computing environments requires efficient resource allocation mechanisms to manage dynamic workloads and meet user demands. This paper proposes a dynamic resource allocation strategy that integrates gravitational search optimization (GSO) with Harris Hawks optimization (HHO) to optimize resource utilization and maintain QoS in cloud infrastructures. The proposed hybrid approach combines the global search capabilities of GSO, inspired by the law of gravity, with the exploitation and exploration strategies of HHO, mimicking the cooperative hunting behavior of Harris hawks. This synergy enables adaptive and efficient allocation of computational resources based on real-time workload fluctuations, reducing response times, minimizing energy consumption, and preventing Service Level Agreement (SLA) violations. By predicting workload variations and adjusting resource allocation dynamically, the proposed method ensures higher reliability, scalability, and cost-effectiveness compared to traditional resource allocation techniques. Simulation results demonstrate that the GSO-HHO-based approach outperforms conventional optimization algorithms in balancing the trade-offs between performance and resource efficiency, making it a robust solution for maintaining QoS in cloud computing environments.Abstract
How to Cite
Downloads
Similar Articles
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- NEERAJ K. SRIVASTAVA, A.K. SRIVASTAVA, WATER QUALITY ASSESSMENT OF GOMTI RIVER AROUND INDUSTRIAL AREA AT DISTT. SULTANPUR , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Gitesh Kalita, NEP 2020 policies for inclusive education , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Sadguru Prakash, QUANTIFICATION OF FLUORIDE IN DRINKING WATER OF RURAL AND URBAN AREAS OF BALRAMPUR DISTRICT, U. P., INDIA , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Varsha Kachhela, Jalpa Rank, Charmy Kothari, Screening of environmental bacteria for multiple dye decolorization capabilities in textile wastewater , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Amod Kumar, Nalini Bhardwaj, BIOLOGY OF SUGARCANE WOOLLY APHID (Ceratovacuna lanigera) UNDER LABORATORY CONDITIONS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shailyba Baldevsinh Vala, Manoj Sharma, Analyzing leadership practices among NGOs in Gujarat: A study , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.