Dynamic resource allocation with otpimization techniques for qos in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.06Keywords:
Cloud computing, quality of service, Optimization techniques, Dynamic resource allocation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ensuring the quality of service (QoS) in cloud computing environments requires efficient resource allocation mechanisms to manage dynamic workloads and meet user demands. This paper proposes a dynamic resource allocation strategy that integrates gravitational search optimization (GSO) with Harris Hawks optimization (HHO) to optimize resource utilization and maintain QoS in cloud infrastructures. The proposed hybrid approach combines the global search capabilities of GSO, inspired by the law of gravity, with the exploitation and exploration strategies of HHO, mimicking the cooperative hunting behavior of Harris hawks. This synergy enables adaptive and efficient allocation of computational resources based on real-time workload fluctuations, reducing response times, minimizing energy consumption, and preventing Service Level Agreement (SLA) violations. By predicting workload variations and adjusting resource allocation dynamically, the proposed method ensures higher reliability, scalability, and cost-effectiveness compared to traditional resource allocation techniques. Simulation results demonstrate that the GSO-HHO-based approach outperforms conventional optimization algorithms in balancing the trade-offs between performance and resource efficiency, making it a robust solution for maintaining QoS in cloud computing environments.Abstract
How to Cite
Downloads
Similar Articles
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Pratibha Baluni, Priya Kathait, Pankaj Bahuguna, C. B. Kotnala, Rajesh Rayal, Analysis of Riparian Vegetation Diversity at Khanda Gad Stream, Garhwal Himalaya, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Naresh Vyas, Dushyant Dave, Impact of Textile Effluents on Water in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Roopshree Banchode, Sai Pranathi Bhallamudi, S. P. Kanchana, Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- B.P. Singh, Manju Yadav, Afforestation and Economic Upgradation of Wastelands Reclamation in Ganga-Yamuna Doab , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Parwez Ahmad, Md Jamaluddin, Estimation of Some Heavy Metal Estimation at Sites of Saryug River as Lateral Tributary of the Ganga in Northern Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.