Optimization-based clustering feature extraction approach for human emotion recognition
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.04Keywords:
Human emotion recognition, Facial expression, Segmentation, Feature extraction, Noise removal, Ant colony optimization, Support vector machine.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Human emotions are mental health states that resolve without conscious effort and are followed by physiological effects in the face muscles that represent expressions. In many applications of human-computer interaction, nonverbal communication mechanisms such as emotions, eye movements, and motions are used. Since there is no contrast among the emotions of a face and there is also a lot of variety and complexity, identifying emotions is a difficult process. To model the face, the machine learning system leverages some open features. Automatic emotion recognition based on face expression is a fascinating study area that has been presented and utilized in a variety of fields, including safety, health, and human-machine interactions. Researchers in this subject are willing to develop strategies to understand, code, and extract facial expressions in order to improve computer prediction. Machine learning, being one of the most promising new fields, offers a wide range of applications. In recent years, the support vector clustering technique has gotten a lot of attention. In this research paper, the use of ant colony optimization (ACO) for creating k-cluster planes and assigning each data sample to the correct cluster is proposed in this study as an upgraded clustering approach. SVC is used in this improved technique to refine the clusters created by ACO. The human face expressions are segmented using this upgraded clustering method. The suggested clustering technique is compared to an existing segmentation approach for emotion recognition using a variety of criteria.Abstract
How to Cite
Downloads
Similar Articles
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.