Optimization-based clustering feature extraction approach for human emotion recognition
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.04Keywords:
Human emotion recognition, Facial expression, Segmentation, Feature extraction, Noise removal, Ant colony optimization, Support vector machine.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Human emotions are mental health states that resolve without conscious effort and are followed by physiological effects in the face muscles that represent expressions. In many applications of human-computer interaction, nonverbal communication mechanisms such as emotions, eye movements, and motions are used. Since there is no contrast among the emotions of a face and there is also a lot of variety and complexity, identifying emotions is a difficult process. To model the face, the machine learning system leverages some open features. Automatic emotion recognition based on face expression is a fascinating study area that has been presented and utilized in a variety of fields, including safety, health, and human-machine interactions. Researchers in this subject are willing to develop strategies to understand, code, and extract facial expressions in order to improve computer prediction. Machine learning, being one of the most promising new fields, offers a wide range of applications. In recent years, the support vector clustering technique has gotten a lot of attention. In this research paper, the use of ant colony optimization (ACO) for creating k-cluster planes and assigning each data sample to the correct cluster is proposed in this study as an upgraded clustering approach. SVC is used in this improved technique to refine the clusters created by ACO. The human face expressions are segmented using this upgraded clustering method. The suggested clustering technique is compared to an existing segmentation approach for emotion recognition using a variety of criteria.Abstract
How to Cite
Downloads
Similar Articles
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

