Optimization-based clustering feature extraction approach for human emotion recognition
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.04Keywords:
Human emotion recognition, Facial expression, Segmentation, Feature extraction, Noise removal, Ant colony optimization, Support vector machine.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Human emotions are mental health states that resolve without conscious effort and are followed by physiological effects in the face muscles that represent expressions. In many applications of human-computer interaction, nonverbal communication mechanisms such as emotions, eye movements, and motions are used. Since there is no contrast among the emotions of a face and there is also a lot of variety and complexity, identifying emotions is a difficult process. To model the face, the machine learning system leverages some open features. Automatic emotion recognition based on face expression is a fascinating study area that has been presented and utilized in a variety of fields, including safety, health, and human-machine interactions. Researchers in this subject are willing to develop strategies to understand, code, and extract facial expressions in order to improve computer prediction. Machine learning, being one of the most promising new fields, offers a wide range of applications. In recent years, the support vector clustering technique has gotten a lot of attention. In this research paper, the use of ant colony optimization (ACO) for creating k-cluster planes and assigning each data sample to the correct cluster is proposed in this study as an upgraded clustering approach. SVC is used in this improved technique to refine the clusters created by ACO. The human face expressions are segmented using this upgraded clustering method. The suggested clustering technique is compared to an existing segmentation approach for emotion recognition using a variety of criteria.Abstract
How to Cite
Downloads
Similar Articles
- KIRAN DIMRI, N.K. SHARMA, SEED GERMINATION OF ANACYCLUS PYRETHRUMD.C. IN EXPERIMENTAL FIELD , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vishal Panghal, Asha Singh, Dinesh Arora, Nidhi Ahlawat, Sunder S. Arya, Sunil Kumar, Horizontal flow biochar amended constructed wetlands as a sustainable approach for rural wastewater treatment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Hemang Shah, Archana Gadekar, Artificial intelligence and intellectual property rights with special reference to patent and copyright , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.