A smart grid data privacy-preserving aggregation approach with authentication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.31Keywords:
Smart Grid, Privacy-Preserving Aggregation, Cryptographic Techniques, Homomorphic Encryption, Cyber-Attacks, Smart Meters, Data PrivacyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authentication of smart grid privacy-preserving aggregation addresses two of the key privacy and security issues of the smart grids: user data confidentiality and grid node communication safety. The proposed study elaborates on a new approach to data aggregation with authentication in smart grid systems for the safe and efficient exchange of information. The proposed solution would apply techniques, such as homomorphic encryption along with advanced cryptographic techniques, to calculate encrypted data without leaking sensitive information. Data and device integrity are more likely to be maintained when using better authentication techniques like blockchain and quantum key distribution (QKD). This dual layered aggregation with privacy-preserving combined with robust authentication can strengthen the smart grids against unauthorized access and data tampering, along with other cyber-attacks. The results show that the proposed approach for aggregation in smart meters is more accurate and useful in terms of data as compared to the conventional approaches. As far as mean relative error (MRE) is concerned, the MRE of the proposed layer model is 0.0007, which is substantially smaller than the differentially private model (0.0023) and Gaussian model (0.0058). The minimum MRE of the proposed model was achieved in the aggregator layer at 0.0029 compared with the corresponding differentially- private model’s 0.0063 and Gaussian model’s 0.0117. As the privacy parameter ε increases, noise levels drop precipitously from 14.137738 for ε = 0.1 to 0.282786 for ε = 5.0. The proposed methodology improves smart grid data aggregation with a balance between privacy and accuracy.Abstract
How to Cite
Downloads
Similar Articles
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

