A smart grid data privacy-preserving aggregation approach with authentication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.31Keywords:
Smart Grid, Privacy-Preserving Aggregation, Cryptographic Techniques, Homomorphic Encryption, Cyber-Attacks, Smart Meters, Data PrivacyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authentication of smart grid privacy-preserving aggregation addresses two of the key privacy and security issues of the smart grids: user data confidentiality and grid node communication safety. The proposed study elaborates on a new approach to data aggregation with authentication in smart grid systems for the safe and efficient exchange of information. The proposed solution would apply techniques, such as homomorphic encryption along with advanced cryptographic techniques, to calculate encrypted data without leaking sensitive information. Data and device integrity are more likely to be maintained when using better authentication techniques like blockchain and quantum key distribution (QKD). This dual layered aggregation with privacy-preserving combined with robust authentication can strengthen the smart grids against unauthorized access and data tampering, along with other cyber-attacks. The results show that the proposed approach for aggregation in smart meters is more accurate and useful in terms of data as compared to the conventional approaches. As far as mean relative error (MRE) is concerned, the MRE of the proposed layer model is 0.0007, which is substantially smaller than the differentially private model (0.0023) and Gaussian model (0.0058). The minimum MRE of the proposed model was achieved in the aggregator layer at 0.0029 compared with the corresponding differentially- private model’s 0.0063 and Gaussian model’s 0.0117. As the privacy parameter ε increases, noise levels drop precipitously from 14.137738 for ε = 0.1 to 0.282786 for ε = 5.0. The proposed methodology improves smart grid data aggregation with a balance between privacy and accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Adoption of health information systems in emerging economies: Evidence from Ghana , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.