A smart grid data privacy-preserving aggregation approach with authentication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.31Keywords:
Smart Grid, Privacy-Preserving Aggregation, Cryptographic Techniques, Homomorphic Encryption, Cyber-Attacks, Smart Meters, Data PrivacyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authentication of smart grid privacy-preserving aggregation addresses two of the key privacy and security issues of the smart grids: user data confidentiality and grid node communication safety. The proposed study elaborates on a new approach to data aggregation with authentication in smart grid systems for the safe and efficient exchange of information. The proposed solution would apply techniques, such as homomorphic encryption along with advanced cryptographic techniques, to calculate encrypted data without leaking sensitive information. Data and device integrity are more likely to be maintained when using better authentication techniques like blockchain and quantum key distribution (QKD). This dual layered aggregation with privacy-preserving combined with robust authentication can strengthen the smart grids against unauthorized access and data tampering, along with other cyber-attacks. The results show that the proposed approach for aggregation in smart meters is more accurate and useful in terms of data as compared to the conventional approaches. As far as mean relative error (MRE) is concerned, the MRE of the proposed layer model is 0.0007, which is substantially smaller than the differentially private model (0.0023) and Gaussian model (0.0058). The minimum MRE of the proposed model was achieved in the aggregator layer at 0.0029 compared with the corresponding differentially- private model’s 0.0063 and Gaussian model’s 0.0117. As the privacy parameter ε increases, noise levels drop precipitously from 14.137738 for ε = 0.1 to 0.282786 for ε = 5.0. The proposed methodology improves smart grid data aggregation with a balance between privacy and accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Aditi Sharma, Atal Bihari Bajpai, Naina Srivastava, Yunus Ali, Anjali Thapa, Naveen Gaurav, Arun Kumar, Effect of Growth Regulators and in vitro Clonal Propagation of Adhatoda vasica , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A.P. Asha Sapna, C. Anbalagan, Towards a better living environment-compressive strength and water absorption testing of mini compressed stabilized earth blocks and fired bricks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Susai Raj, A. Edward William Benjamin, Evaluating the effectiveness of academic resilience intervention for at-risk students at higher secondary level , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

