Improving classification precision for medical decision systems through big data analytics application
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.28Keywords:
Medical Decision Systems, Big Data Analytics, Healthcare Data, Machine Learning, Classification AccuracyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The rapid evolution of machine learning (ML) and big data analytics has modernized medical decision-making procedure, offering promising path for improving classification precision and ultimately, patient outcomes. This research inspects methodologies for enhancing the classification accuracy of medical decision systems by leveraging ML algorithms and big data analytics procedure. In this study, a broad evaluation of existing literature on ML applications in healthcare and medical decision-making is carried out to discover current challenges and potential areas for improvement. The research explores the integration of diverse data sources, including electronic health records (EHRs), medical imaging, genomic data, and patient-generated data, to build robust predictive models. Moreover, the research emphasizes the importance of interpretability and transparency in ML models for medical decision-making, particularly in critical healthcare settings where the rationale behind predictions is crucial. Techniques for model explainability, such as feature importance analysis and model-agnostic interpretability methods, are explored to enhance trust and adoption of ML-driven decision systems by healthcare professionals. Furthermore, the study investigates advanced ML algorithms such as deep learning, ensemble methods, and feature engineering techniques to extract meaningful patterns from large and complex medical datasets. Through experimentation with real-world medical datasets, the efficacy of these algorithms in improving classification accuracy is evaluated and compared against traditional methods. The result of this research contributes to the advancement of ML-driven medical decision systems by providing insights into strategies for improving classification accuracy, thereby facilitating more exact diagnosis, prognosis, and treatment recommendations. Ultimately, the integration of ML and big data analytics holds immense potential for revolutionizing healthcare delivery and improving patient outcomes.Abstract
How to Cite
Downloads
Similar Articles
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

