
Abstract
The rapid evolution of machine learning (ML) and big data analytics has modernized medical decision-making procedure, offering 
promising path for improving classification precision and ultimately, patient outcomes. This research inspects methodologies for 
enhancing the classification accuracy of medical decision systems by leveraging ML algorithms and big data analytics procedure. In this 
study, a broad evaluation of existing literature on ML applications in healthcare and medical decision-making is carried out to discover 
current challenges and potential areas for improvement. The research explores the integration of diverse data sources, including electronic 
health records (EHRs), medical imaging, genomic data, and patient-generated data, to build robust predictive models. Moreover, the 
research emphasizes the importance of interpretability and transparency in ML models for medical decision-making, particularly 
in critical healthcare settings where the rationale behind predictions is crucial. Techniques for model explainability, such as feature 
importance analysis and model-agnostic interpretability methods, are explored to enhance trust and adoption of ML-driven decision 
systems by healthcare professionals. Furthermore, the study investigates advanced ML algorithms such as deep learning, ensemble 
methods, and feature engineering techniques to extract meaningful patterns from large and complex medical datasets. Through 
experimentation with real-world medical datasets, the efficacy of these algorithms in improving classification accuracy is evaluated 
and compared against traditional methods. The result of this research contributes to the advancement of ML-driven medical decision 
systems by providing insights into strategies for improving classification accuracy, thereby facilitating more exact diagnosis, prognosis, 
and treatment recommendations. Ultimately, the integration of ML and big data analytics holds immense potential for revolutionizing 
healthcare delivery and improving patient outcomes.
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Introduction
In recent years, the proliferation of healthcare data, coupled 
with advancements in machine learning (ML) and big data 
analytics, has catalyzed a paradigm shift in medical decision-
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making progression. Conventional approaches to diagnosis 
and treatment planning are increasingly augmented, if 
not supplanted, by sophisticated computational models 
capable of extracting actionable insights from vast and 
heterogeneous datasets. In this context, the quest for 
enhancing classification accuracy in medical decision 
systems has emerged as a paramount objective, with 
profound implications for patient care, resource allocation, 
and healthcare outcomes. (Andreu et al., 2015)

Medical decision systems play a pivotal role in clinical 
practice, aiding healthcare professionals in diagnosing 
diseases, predicting patient outcomes, and personalizing 
treatment regimens. However, the complexity and variability 
inherent in clinical data pose formidable challenges to 
traditional analytical techniques. Conventional statistical 
methods often struggle to capture the intricate relationships 
within multidimensional datasets comprising diverse 
modalities such as electronic health records (EHRs), medical 
imaging, genomic information, and real-time patient-
generated data. As a result, there is a growing imperative 



The Scientific Temper. Vol. 15, No. 4 	 Archana G and Vijayalakshmi V 	 3188

to harness the power of ML and big data analytics to unlock 
the latent predictive potential of these data sources (Belle 
et al., 2015).

Machine learning techniques offer a promising avenue 
for improving classification accuracy in medical decision 
systems by automatically learning from data patterns and 
iteratively refining predictive models. Unlike rule-based 
algorithms, ML algorithms have the capacity to discern 
intricate patterns, adapt to evolving data distributions, and 
uncover subtle correlations that may elude human intuition. 
Moreover, the advent of deep learning architectures has 
revolutionized the analysis of complex medical images and 
unstructured clinical text, enabling the development of 
more accurate and scalable predictive models.

In parallel, big data analytics frameworks provide 
the infrastructure necessary for processing, storing, and 
analyzing massive volumes of healthcare data at scale. By 
leveraging distributed computing platforms and advanced 
data management techniques, big data analytics enable 
the integration of disparate data sources and the extraction 
of actionable insights in near real-time. Consequently, 
healthcare organizations are empowered to derive valuable 
clinical insights, optimize resource utilization, and enhance 
patient outcomes through evidence-based decision-making 
(Capobianco, 2017) (Table 1).

Against this backdrop, this research aims to explore 
novel methodologies for enhancing classification accuracy 
in medical decision systems through the synergistic 
integration of machine learning and big data analytics. By 
elucidating the challenges, opportunities, and best practices 
in this domain, this study seeks to advance the state-of-
the-art in ML-driven healthcare analytics and pave the way 
for more effective, efficient, and patient-centric healthcare 
delivery (Cunha et al., 2015).

Fuzzy K-Medoids Clustering-Based Attribute 
Weighting (FKMAW)
The following section outlines the initial steps of fuzzy 
k-medoid clustering. Let A = {a1, a2, a3, ..., am} represent 
a collection of m objects, each potentially characterized 
by a feature vector. Define the dissimilarity between 
objects as d(aj, ai). Let M be a subset of A with cardinality 
k, indicating that M is a k-subset of A. The objective of the 
fuzzy k-medoids algorithm is to minimize (Silva et al., 2015).

The minimization process is carried out for each M within 
Ak. Within the equation, cji predominantly denotes the fuzzy 
membership of ai within cluster j. The heuristic depiction 
of the fuzzy membership function is outlined through the 
subsequent equation:

Equation 2 introduces the concept of a fuzzifier denoted as 
‘f’. Utilizing the equations provided, a fuzzy partition of set 
A is established, ensuring that the cumulative membership 
of an object ‘ai’ across all classes equals one.

Scale parameters α and µ, in equation 4, vary for each 
cluster based on cluster size, determined from input data. 
Crucial for identifying cluster boundaries and removing 
outliers, they convert input features to fuzzy values in the 
fuzzy k-medoids algorithm. An effective FKMAW method 
enhances classification accuracy in heart disease datasets 
by making data linearly separable, employing clustering 
techniques (Ding et al., 2018).

The dissimilarity measure (d ab) compares the distance 
between data objects Oa and Ob. Using a fuzzy factor p and 
membership degree mab, the medoid’s presence in a cluster 
is assessed. A hyperparameter, fuzziness factor, determines 
cluster overlap. Varying p and mab generates different 
partitioning strategies, allocating objects accordingly (Farid 
et al., 2016)
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FKMAW - Fuzzy k-medoids Clustering based Attribute 
Weighting
Initially, the fuzzy k-medoids technique identifies cluster 
medoids. Crucially, two key ratios are derived: medoid 
or mean value and mean or medoid value. Data values 
are multiplied by the appropriate ratio, determined by 
comparison with the medoid or mean. FKMAW ensures 
medoid proximity (Hernandez et al., 2017).

Here the values of the feature(t1) are referred to as 
h=1,2,…, s. The number of associated feature values in c1 
class is represented as s and the average feature value as 
t1, respectively. Depending upon the clustering method 
of k-medoids, the c1 class with the medoid value for the 
associated feature is referred to as . A weighting coefficient 
(ω1) with a higher value is used when the medoid value 
computed is found to be higher than the feature value.
(Istephan et al., 2015)

Deep Belief Networks Architecture
Understanding deep belief networks (DBN) architecture 
becomes accessible through RBMs. In this architecture, the 
initial RBM, equipped with a visible network layer, ingests 
input data. The subsequent RBM receives input from the 
output of the preceding RBM. The DBN learning process 
adheres strictly to a layer-by-layer, unsupervised learning 
approach. Within DBN architecture, pre-training and fine-
tuning emerge as pivotal stages. During pre-training, 
RBMs undergo continuous training until the hidden layer of 
the final RBM is reached. Subsequently, in the fine-tuning 
phase, sample data output labels come into play, facilitating 
parameter adjustment through the back-propagation 
algorithm.(Knoppers et al., 2017)

Demonstrating the efficacy of the MDSS, a DBN 
prediction model is constructed utilizing an extreme 
learning machine (ELM) (Figure 1). Within this model, the ELM 
functions as the foundation for regression tasks, showcasing 
its versatility. The activation function, exemplified by a 
sigmoid function from the ELM, plays a crucial role in 
model operations. However, it’s noteworthy that the DBN 
structure is composed of two RBMs. Each layer within the 
DBN encompasses varying neuron counts, specifically 35, 
100, and 10 neurons, contributing to its complexity. A visual 

representation depicting the architecture of the DBN model 
is provided (Lo et al., 2016).

Experimental Results and Analysis
During the analysis, the proposed approach’s effectiveness 
was evaluated across six distinct datasets: heart disease 
(Hungarian), heart disease (Swiss), heart disease (Cleveland), 
heart disease (Statlog), BUPA liver disorders, Parkinson’s 
disease (PD), HSV, and early stage diabetes Risk Prediction 
(ESDRP) dataset. Each dataset is briefly described below:

CAD-based Datasets (Heart Hungary, Heart Swiss, 
Heart Cleveland)
Obtained from the UCI data repository, these datasets are 
utilized in CAD analysis. They comprise 13 subsets of specific 
non-category attributes and 76 category attributes each 
(Mathew et al., 2015).

Parkinson’s Disease (PD) Dataset
This dataset comprises 195 biomedical sound measurements 
collected from 23 patients with Parkinson’s disease and eight 
patients without the disease.

Statlog Heart Disease Dataset
These datasets, sourced from the UCI repository, include 
270 instances from patients affected by heart disease and 
those without the disease. Among these, 150 samples are 
from patients with heart disease, while 120 samples are 
from symptom-free individuals (Mendelson, 2017) (Table 2).

The liver disorders dataset consists of 345 instances 
categorized into two classes and comprising six attributes. 

Figure 1: Multi-dimension scaling for disease prediction using DBN 
with a regression model structure of the proposed DBN-based 

model
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This dataset was compiled by the scientific research 
company BUPA (Table 3 and Figure 2). Data samples were 
collected from patients with hepatic deficiency as well as 
from healthy individuals without any disability. Specifically, 
there are 200 samples from healthy individuals and 145 
samples from patients with hepatic disability. Each sample 
is characterized by six major features, with the first five 
features derived from the patient’s blood test report. The 
final feature is contingent upon the individual’s alcohol 
intake (Murphy et al., 2017).

Cardiovascular Disease Dataset
The cardiovascular disease dataset includes three distinct 
types of input features: objective, examination, and 
subjective. Objective data contains factual information, 
while the examination feature encompasses medical 
examination results. Information provided by the patient 
is recorded in the subjective feature. Table 2 outlines the 
features present in the cardiovascular disease dataset (Ni 
et al., 2015).

Physionet Heart Disease Dataset
The dataset comprises patient health records collected as 
part of routine procedures. These records were gathered 
during mandatory follow-up appointments at 28 days, 
3 months, and 6 months intervals. In cases where patients 
couldn’t physically visit the clinic, follow-up was conducted 

Table 1: Attributes of the probability distribution dataset

Parameter Value

Sound fundamental frequency Average, minimum and maximum forms

Measuring disorders based on the fundamental frequency Jitter: DDP(Dysphonia Detection), Jitter: PPQ(Pitch Perturbation Quotient), 
Jitter: RAP(Relative Average Perturbation), Jitter (absolute), Jitter (%)

Amplitude irregularity measurements Shimmer(dB), Shimmer: DDA(Discrete Dipole Approximation), 
APQ5(Amplitude Perturbation Quotient), APQ3, APQ,

The ratio between noise and audio tone component HNR(Harmonic-to-Noise Ratio) and NHR(Noise –to-Harmonic Ratio)

Nonlinear dynamic complexity dimensions RPDE (Recurrence Period Density Entropy) and D2(Correlation Dimension)

Three different trials of Fundamental frequency variation spreads 1, 2 and PPE(Pitch Period Entropy)

spreads 1, 2 and PPE (Personal Protective Equipment) DFA(Defense Production Act)

Figure 2: Graphs for results acquired with BUPA liver disorder dataset on various performance indicators

via telephone. Patients admitted to Zigong Fourth People’s 
Hospital with heart disease between December 2016 and 
June 2019 were retrospectively included in the study. Due to 
its retrospective nature, informed consent was waived. The 
analysis adhered to the principles of the Helsinki Declaration 
and was approved by the Zigong Fourth People’s Hospital 
Ethics Committee (approval number 2020-010). Electronic 
health records of successive patients diagnosed with heart 
disease were examined, with heart failure diagnosed 
based on European Society of Cardiology (ESC) standards 
(Olaronke et al., 2016).
•	 Heart disease symptoms and/or signs may manifest 

as breathlessness, orthopnea, nocturnal dyspnea 
paroxysmal, decreased resistance to exercises, nausea, 
fatigue, prolonged healing time following exercise, and 
swelling of the ankle.

•	 Common signs include elevated jugular venous pressure, 
hepatojugular reflux, presence of a third heart tone 
(gallop rhythm), and lateral displacement of the apical 
impulse.

•	 Elevated brain natriuretic peptide levels (BNP) (BNP > 
35 pg/mL and/or NT- proBNP > 125 pg/mL) are 
indicative.

•	 Objective confirmation of other underlying cardiac 
functional and systemic improvements in heart failure 
is essential.
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Table 2: Features present in the cardiovascular disease dataset

S. No Name Value

Objective features

1 Age Integer(days)

2 Height Integer(cm)

3 Weight Float(kg)

4 Gender Categorical Code

Examination feature

5 Systolic Blood Pressure Integer(ap_hi)

6 Diastolic Blood Pressure Integer(ap_lo)

7 Cholesterol Normal
Above Normal

Well Above Normal

8 Glucose Normal
Above Normal

Well Above Normal

Subjective feature

9 Smoking Smoke(Binary)

10 Alcohol Intake Alco(Binary)

11 Physical Activity Active(Binary)

12 Presence or Absence of 
cardiac disease

Target Variable(Binary)

Table 3: Results acquired with BUPA liver disorder dataset on various performance indicators

Features All Features

Metrics Precision Recall F-measure Kappa statistics AUC

10-fold CV 0.8614 0.7410 0.7581 0.6732 0.5431

50–50 % training-testing 0.8532 0.6975 0.7389 0.6247 0.5689

60–40% training-testing 0.8314 0.6854 0.7265 0.6104 0.5432

70–30% training-testing 0.8311 0.6935 0.7187 0.6231 0.5278

80–20% training-testing 0.8615 0.7092 0.7486 0.6487 0.5842

After Feature Weighting

10–fold CV 0.9202 0.8821 0.9221 0.9205 0.8342

50–50 % training-testing 0.9104 0.8715 0.9147 0.9105 8278

60–40% training-testing 0.9003 0.8614 0.9139 0.9009 8189

70–30% training-testing 0.9104 0.8715 0.9157 0.9147 8200

80–20% training-testing 0.9534 0.8984 0.9247 0.9282 0.8118

Figure 3: Graphs for acquired findings on various performance 
metrics with heart (Hungary) dataset

•	 In cases of confusion, a stress test or an invasively 
assessed elevated left ventricular (LV) filling pressure 
may be necessary to validate the diagnosis.

The Parkinson’s disease dataset findings are summarized 
in the table. Using the fuzzy k-medoids attribute weighting 
(FKMAW) + deep belief network- extreme learning machine 
(DBNKELM) method with 10-fold cross-validation (CV), 
a precision rate of classification at 0.9487 is achieved. 
Comparatively, the DBNKELM algorithm applied to 
the original dataset yields a precision rate of 0.6353. In 
contrast, the FKMAW + DBNKELM method attains a higher 

precision rate of 0.9745 with an 80-20 % training-testing 
ratio. Conversely, combining the original dataset with the 
DBNKELEM algorithm results in a precision classification 
rate of 0.6460. Notably, the FKMAW + DBNKELM technique 
exhibits superior performance in terms of kappa statistic 
value. Specifically, the 10-fold CV system achieves the 
highest kappa measure of 0.9818. This disparity highlights 
potential variations between the two approaches. Lastly, 
the PD dataset utilizes weighted features to derive effective 
results (Özdemir et al., 2018).

Table 4 presents the results obtained with the heart 
(Hungary) dataset (Figure 3). Additionally, the FKMAW + 
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Table 4: Acquired findings on various performance metrics with heart (Hungary) dataset

Features All features

Metrics Precision Recall f-measure Kappa Statistics AUC

10-foldCV 0.8820 0.70.21 0.652 0.4012 0.7114

50–50%training-testing 0.8811 0.8345 0.8265 0.7526 0.9100

60–40%training-testing 0.8916 0.8214 0.8213 0.7236 0.9041

70–30%training-testing 0.8814 0.8115 0.8175 0.7154 0.8997

80–20%training-testing 0.8916 0.8215 0.8364 0.7526 0.9143

After Feature Weighting

10-foldCV 0.9602 0.8548 0.8756 0.7124 0.9003

50–50%training-testing 0.9587 0.8458 0.8547 0.6915 0.8978

60–40%training-testing 0.9502 0.8436 0.8654 0.7017 0.8975

70–30%training-testing 0.9412 0.8321 0.8547 0.6910 0.8875

80–20%training-testing 0.9634 0.9898 0.9826 0.9907 0.9880

Table 5: The effects of the heart (Swiss) dataset on different performance evaluation criteria

Features All features

Metrics Precision Recall f-measure Kappa statistics AUC

10-foldCV 0.9020 0.7021 0.632 0.4005 0.7014

50–50%training-testing 0.8942 0.8321 0.8541 0.7547 0.9213

60–40%training-testing 0.8936 0.8317 0.8498 0.7478 0.9233

70–30%training-testing 0.8816 0.8287 0.8325 0.7324 0.9185

80–20%training-testing 0.9053 0.8415 0.8664 0.7616 0.9153

After Feature Weighting

10-foldCV 0.9262 0.9398 0.9756 0.7817 0.9898

50–50%training-testing 0.9512 0.8432 0.8547 0.6924 0.9021

60–40%training-testing 0.9407 0.8327 0.8432 0.6814 0.8975

70–30%training-testing 0.9315 0.8215 0.8412 0.6809 0.8950

80–20%training-testing 0.9602 0.8548 0.8646 0.8234 0.9104

Figure 4: Graphs for the effects of the heart (Swiss) dataset  on different performance evaluation criteria

DBNKELM classification precision rate using the 10-fold 
CV technique is 0.9602. Comparatively, the precision rate 
obtained from the original dataset using the DBNKELM 

algorithm is 0.8820. Furthermore, the FKMAW + DBNKELM 
method achieves a precision rate of 0.9634 with an 80 to 
20% training-testing split. Conversely, integrating the actual 
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Table 6: Results from heart (Cleveland) data set on different performance evaluation criteria

Features All features

Metrics Precision Recall f-measure Kappa Statistics AUC

10-foldCV 0.8932 0.7220 0.8156 0.6654 0.7614

50–50%training-testing 0.8857 0.8039 0.8314 0.7100 0.8975

60–40%training-testing 0.8762 0.7932 0.8214 0.6912 0.8947

70–30%training-testing 0.8721 0.7923 0.8145 0.6813 0.8921

80–20%training-testing 0.8962 0.8115 0.8164 0.7716 0.9001

After Feature Weighting

10-foldCV 0.9653 0.8048 0.8546 0.7124 0.9123

50–50%training-testing 0.9544 0.8021 0.8025 0.7766 0.9123

60–40%training-testing 0.9432 0.7944 0.8365 0.7110 0.9045

70–30%training-testing 0.9317 0.7932 0.8245 0.7009 0.8978

80–20%training-testing 0.9762 0.9198 0.9576 0.9617 0.9850

Figure 5: Graphs for results from heart (Cleveland) data set on 
different performance evaluation criteria

dataset with the DBNKELEM classifier (i.e., the actual dataset 
+ classifier) yields a recall classification rate of 0.8916. 
Notably, the FKMAW + DBNKELM approach demonstrates 
superior results, particularly in terms of kappa statistics 
significance. Despite this, the highest kappa value, obtained 
by FKMAW + DBNKELM with the 80 to 20% training- testing 
technique, is 0.9907. Ultimately, the heart (Hungary) dataset 
leverages positively weighted features to enhance outcomes 
(Panda et al., 2017).

Table 5 summarizes the findings obtained with the 
Heart (Swiss) dataset (Figure 4). The FKMAW + DBNKELM 
classification precision rate using the 10-fold cross-

validation (CV) approach is 0.9262. In comparison, the 
precision rate obtained from the initial dataset using the 
DBNKELM algorithm with 10-fold CV is 0.9020. Additionally, 
the FKMAW + DBNKELM method achieves a precision rate of 
0.9602 with an 80 to 20% training-testing split. Conversely, 
integrating the actual dataset with the DBNKELEM classifier 
results in a precision classification rate of 0.9053. Notably, 
superior results are obtained with the FKMAW + DBNKELM 
approach, particularly when considering the kappa statistic 
value (0.8234) for an 80-20% training-testing split (Pramanik 
et al., 2017).

Table 6 displays the findings obtained from the heart 
(Cleveland) dataset (Figure 5). The classification precision 
rate using the 10-fold CV process for FKMAW + DBNKELM is 
0.9653, while using the original dataset with the DBNKELM 
algorithm yields a precision rate of 0.8932. Conversely, the 
FKMAW + DBNKELM technique achieves a precision rate of 
0.9762 with an 80 to 20% training-testing split. However, 
merging the original dataset with the DBNKELEM classifier 
results in a precision classification rate of 0.8962. Notably, 
the FKMAW + DBNKELM approach shows improved results, 
particularly in terms of kappa statistics value. With the 80 to 
20% training-testing split technique, FKMAW + DBNKELM 
achieves the highest kappa score of 0.9850. Additionally, the 
heart (Cleveland) dataset is better at acquiring positively 
weighted features (Price et al., 2015).

Furthermore, Table 7 presents the findings obtained 
with the dataset for cardiovascular diseases. The precise 
classification rate using the 10-fold CV method for FKMAW 
+ DBNKELM is 0.9354. In contrast, FKMAW + DBNKELM 
achieves a precision rate of 0.9765 for an 80 to 20% training-
testing split before attribute weighting. However, when 
integrating the actual dataset with the DBNKELEM classifier 
(i.e., the actual dataset + classifier), the precise classification 
rate achieved is 0.9867. Notably, the FKMAW + DBNKELM 
approach demonstrates superior results, especially when 
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Table 7: Cardiovascular disease dataset results on different performance metrics

Features All features

Metrics Precision Recall f-measure Kappa Statistics AUC

10-foldCV 0.9235 0.8520 0.8657 0.8547 0.7944

50–50%training-testing 0.9737 0.8854 0.8187 0.8214 0.9358

60–40%training-testing 0.9754 0.8843 0.8298 0.8179 0.9547

70–30%training-testing 0.9745 0.8857 0.8321 0.8187 0.9598

80–20%training-testing 0.9765 0.8969 0.8451 0.8257 0.9695

After Feature Weighting

10-foldCV 0.9354 0.8548 0.9589 0.8045 0.9525

50–50%training-testing 0.9632 0.8739 0.8978 0.7945 0.9845

60–40%training-testing 0.9539 0.8640 0.8954 0.7936 0.9789

70–30%training-testing 0.9547 0.8628 0.8735 0.7923 0.9754

80–20%training-testing 0.9867 0.9694 0.9984 0.9561 0.9894

Figure 6: Graphs for Cardiovascular disease dataset results on 
different performance metrics

considering the significance of kappa statistics. Moreover, 
with an 80 to 20% training-testing split, FKMAW + DBNKELM 
attains the highest kappa value of 0.9561. Ultimately, 
the cardiovascular disease dataset emphasizes positively 
weighted features (Reddy et al., 2016).

Table presents the results obtained from the physionet 
heart disease dataset. The classification precision rate of 
FKMAW + DBNKELM using the 10-fold cross-validation 
(CV) process is 0.9872. Conversely, FKMAW + DBNKELM 
achieve a precision rate of 0.9987 with an 80 to 20% training-
testing split. Additionally, integrating the original dataset 

with the DBNKELEM algorithm (i.e., the original dataset + 
DBNKELM) yields a precision classification rate of 0.9562. 
Notably, the FKMAW + DBNKELM approach demonstrates 
positive performance, particularly in terms of the kappa 
statistics value. However, with the 80 to 20% training-testing 
phase, the FKMAW + DBNKELM method attains the highest 
kappa measure of 0.9654. Ultimately, the physionet heart 
disease dataset is adept at acquiring positively weighted 
characteristics (Ren et al., 2015).

Conclusion
Conclusively, the utilization of big data analytics presents 
significant potential for enhancing the precision of medical 
decision systems. Through the analysis of extensive 
healthcare data, these systems are better equipped to 
recognize essential patterns, trends, and correlations 
necessary for accurate classification. By employing advanced 
analytics techniques, healthcare professionals can make 
more informed decisions, leading to improved patient 
outcomes and the progression of medical understanding. 
Thus, the integration of big data analytics into medical 
decision systems marks a crucial advancement towards 
attaining heightened levels of classification accuracy within 
healthcare environments.
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