Improving classification precision for medical decision systems through big data analytics application
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.28Keywords:
Medical Decision Systems, Big Data Analytics, Healthcare Data, Machine Learning, Classification AccuracyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The rapid evolution of machine learning (ML) and big data analytics has modernized medical decision-making procedure, offering promising path for improving classification precision and ultimately, patient outcomes. This research inspects methodologies for enhancing the classification accuracy of medical decision systems by leveraging ML algorithms and big data analytics procedure. In this study, a broad evaluation of existing literature on ML applications in healthcare and medical decision-making is carried out to discover current challenges and potential areas for improvement. The research explores the integration of diverse data sources, including electronic health records (EHRs), medical imaging, genomic data, and patient-generated data, to build robust predictive models. Moreover, the research emphasizes the importance of interpretability and transparency in ML models for medical decision-making, particularly in critical healthcare settings where the rationale behind predictions is crucial. Techniques for model explainability, such as feature importance analysis and model-agnostic interpretability methods, are explored to enhance trust and adoption of ML-driven decision systems by healthcare professionals. Furthermore, the study investigates advanced ML algorithms such as deep learning, ensemble methods, and feature engineering techniques to extract meaningful patterns from large and complex medical datasets. Through experimentation with real-world medical datasets, the efficacy of these algorithms in improving classification accuracy is evaluated and compared against traditional methods. The result of this research contributes to the advancement of ML-driven medical decision systems by providing insights into strategies for improving classification accuracy, thereby facilitating more exact diagnosis, prognosis, and treatment recommendations. Ultimately, the integration of ML and big data analytics holds immense potential for revolutionizing healthcare delivery and improving patient outcomes.Abstract
How to Cite
Downloads
Similar Articles
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.