Crop yield prediction in diverse environmental conditions using ensemble learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.43Keywords:
Machine Learning, Crop Yield, Optimization, AdaBoost, WOADimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Precise assessment of crop yield is a vital component in agricultural planning and decision-making, having immediate consequences for food security and allocation of resources. This study presents a new approach for predicting agricultural output in different climatic conditions by integrating the xgboost algorithm with the Whale Optimization Algorithm (WOA). XGBoost is a kind of ensemble learning method that enhances the accuracy of predictions by combining the results of many weak learners. However, the performance of the system may be significantly affected by the selection of suitable hyper parameters and feature subsets. To address this problem, we use the WOA algorithm, a nature-inspired optimization approach that mimics the foraging behavior of humpback whales. This technique is used to improve the parameters of xgboost and discover the most influential features. We evaluate the proposed model by using extensive datasets that include a diverse array of crops, soil compositions, climatic conditions, and geographic regions. The results suggest that the xgboost-WOA model outperforms traditional machine learning models in terms of both projected accuracy and efficiency. Furthermore, the suggested method showcases robust and reliable performance across different environmental circumstances, highlighting its potential for practical use in precision agriculture. This research emphasizes the effectiveness of combining AdaBoost with WOA for forecasting agricultural output. Furthermore, it contributes to the development of advanced predictive systems to support sustainable agricultural operations in adapting to climate variations and changing environmental conditions.Abstract
How to Cite
Downloads
Similar Articles
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Naresh Vyas, Bhagirath Choudhary, Manu Purohit, Community Analysis of Plant Parasitic Nematodes in and Around Bilara, Rajasthan , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Neha Saini, Rashmi Verma, Rabia Basri Aziz, Ashmita Bhatt, Hem Chandra Pant, Naveen Gaurav, Effect of Growth Regulators on Direct Clonal Propagation and Analysis of Total Phenolic Content of Wild and Propagated Mucuna pruriens , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nitin Bhone, Nilesh Diwakar, S. S. Chinchanikar, Multi-response optimization for AISI M7 Hard Turning Using the utility concept , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Getasew Mesfin, Isreal Zewide, Abdeta Jembere, Physicochemical Characterization of Vermicompost and its Effect on Acidic Soils in Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.