Crop yield prediction in diverse environmental conditions using ensemble learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.43Keywords:
Machine Learning, Crop Yield, Optimization, AdaBoost, WOADimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Precise assessment of crop yield is a vital component in agricultural planning and decision-making, having immediate consequences for food security and allocation of resources. This study presents a new approach for predicting agricultural output in different climatic conditions by integrating the xgboost algorithm with the Whale Optimization Algorithm (WOA). XGBoost is a kind of ensemble learning method that enhances the accuracy of predictions by combining the results of many weak learners. However, the performance of the system may be significantly affected by the selection of suitable hyper parameters and feature subsets. To address this problem, we use the WOA algorithm, a nature-inspired optimization approach that mimics the foraging behavior of humpback whales. This technique is used to improve the parameters of xgboost and discover the most influential features. We evaluate the proposed model by using extensive datasets that include a diverse array of crops, soil compositions, climatic conditions, and geographic regions. The results suggest that the xgboost-WOA model outperforms traditional machine learning models in terms of both projected accuracy and efficiency. Furthermore, the suggested method showcases robust and reliable performance across different environmental circumstances, highlighting its potential for practical use in precision agriculture. This research emphasizes the effectiveness of combining AdaBoost with WOA for forecasting agricultural output. Furthermore, it contributes to the development of advanced predictive systems to support sustainable agricultural operations in adapting to climate variations and changing environmental conditions.Abstract
How to Cite
Downloads
Similar Articles
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- G. S. Singh, S. S. Rath, S. S. Singh, EFFECT OF NUMBER OF FEEDING ON DISEASE INCIDENCE IN TASR SILKWORM, ANTHERAEA MYLITTA D. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Naveen Kumar, Sunder S. Arya, Mamta Sawariya, Ajay Kumar, Neha Yadav, Jyoti Sharma, Himanshu Mehra, Unraveling the effect of salicylic acid on Vigna radiata L. under PEG- induced drought stress , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- NITHYA R, shruthi D, Sindhuja S, Sneha S, Challenges encountered by health care professionals in monitoring adverse events due to medical devices: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.