Crop yield prediction in diverse environmental conditions using ensemble learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.43Keywords:
Machine Learning, Crop Yield, Optimization, AdaBoost, WOADimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Precise assessment of crop yield is a vital component in agricultural planning and decision-making, having immediate consequences for food security and allocation of resources. This study presents a new approach for predicting agricultural output in different climatic conditions by integrating the xgboost algorithm with the Whale Optimization Algorithm (WOA). XGBoost is a kind of ensemble learning method that enhances the accuracy of predictions by combining the results of many weak learners. However, the performance of the system may be significantly affected by the selection of suitable hyper parameters and feature subsets. To address this problem, we use the WOA algorithm, a nature-inspired optimization approach that mimics the foraging behavior of humpback whales. This technique is used to improve the parameters of xgboost and discover the most influential features. We evaluate the proposed model by using extensive datasets that include a diverse array of crops, soil compositions, climatic conditions, and geographic regions. The results suggest that the xgboost-WOA model outperforms traditional machine learning models in terms of both projected accuracy and efficiency. Furthermore, the suggested method showcases robust and reliable performance across different environmental circumstances, highlighting its potential for practical use in precision agriculture. This research emphasizes the effectiveness of combining AdaBoost with WOA for forecasting agricultural output. Furthermore, it contributes to the development of advanced predictive systems to support sustainable agricultural operations in adapting to climate variations and changing environmental conditions.Abstract
How to Cite
Downloads
Similar Articles
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Firdaus Benazir, Reena Mohanka, S Rehan Ahmad, Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.