Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.12Keywords:
Intuitionistic Fuzzy Theory; Markov Chains; Aggregation Operators; Weighted Geometric Operator; Artificial Neural NetworkDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this work, we have presented the decision-making models based on ANN, which takes argument pairs, of the intuitionistic fuzzy values and defuzzifies the decision matrices and create Stochastic matrices for producing input for computations of ANN. Concepts from Stochastic processes namely Markov chains and limiting distributions are discussed in detail in this research work and has been applied for effective decision making in complex situations. The numerical illustration provided in this work will be solved using the Markov chain models and some linear space techniques and applied in Artificial Neural Network (ANN). A new Algorithm is also developed for solving the MAGDM problems applying the proposed methods. The Numerical illustrations are solved with defuzzyfication operators and the results are recorded for effectiveness and comparisons are made with some existing methods. The new method proves to be more effective than the previous methods of ANN for MAGDM problemsAbstract
How to Cite
Downloads
Similar Articles
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Manisha Anil Vhora, Vidya Bhandwalkar, Prashant Mangesh Rege, AI-driven HR analytics: Enhancing decision-making in workforce planning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.

