Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.12Keywords:
Intuitionistic Fuzzy Theory; Markov Chains; Aggregation Operators; Weighted Geometric Operator; Artificial Neural NetworkDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this work, we have presented the decision-making models based on ANN, which takes argument pairs, of the intuitionistic fuzzy values and defuzzifies the decision matrices and create Stochastic matrices for producing input for computations of ANN. Concepts from Stochastic processes namely Markov chains and limiting distributions are discussed in detail in this research work and has been applied for effective decision making in complex situations. The numerical illustration provided in this work will be solved using the Markov chain models and some linear space techniques and applied in Artificial Neural Network (ANN). A new Algorithm is also developed for solving the MAGDM problems applying the proposed methods. The Numerical illustrations are solved with defuzzyfication operators and the results are recorded for effectiveness and comparisons are made with some existing methods. The new method proves to be more effective than the previous methods of ANN for MAGDM problemsAbstract
How to Cite
Downloads
Similar Articles
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P.L. Parmar, P.M George, Effect of process parameters on concentricity in CNC turning operation using design of experiment , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.