
Abstract
In this work, we have presented the decision-making models based on ANN, which takes argument pairs of the intuitionistic fuzzy values 
and, defuzzifies the decision matrices and creates stochastic matrices for producing input for computations of ANN. Concepts from 
Stochastic processes, namely Markov chains and limiting distributions, are discussed in detail in this research work and have been applied 
for effective decision-making in complex situations. The numerical illustration provided in this work will be solved using the Markov 
chain models and some linear space techniques and applied in artificial neural network (ANN). A new algorithm is also developed for 
solving the MAGDM problems by applying the proposed methods. The numerical illustrations are solved with defuzzyfication operators 
and the results are recorded for effectiveness and comparisons are made with some existing methods. The new method proves to be 
more effective than the previous methods of ANN for MAGDM problems.
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Introduction
Intuitionistic fuzzy sets (IFS) is a growing area of research 
and were introduced by Atanassov, which also registers 
its importance in the field of artificial intelligence (AI) and 
machine learning (ML) in the present digital era. Recently, 
many researchers have concentrated on neural networks with 
various applications to the industry globally. An aggregation 
process with a variety of operators is mandatory for multiple 
attribute group decision-making (MAGDM) problems, 
which many authors provided. It is obvious that the fields of 
MAGDM and ANN are closely related, with both techniques 
including the processing of input data with weight vectors 
and sharing some common computational methodologies 
like sorting and filtering of the data set irrespective of their 
nature. Deriving an appropriate weighting vector for the 
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MAGDM process or the ANN methodology for the available 
attributes is a herculean task, and in this paper, we have 
concentrated on the development of an apt weighting 
vector for the neural network process with the IFS data set. 
The methodology followed in this work is as follows: Initially, 
the decision matrices are converted to stochastic matrices 
and the weights are derived from arriving at the stationary 
distribution for the Markov chains and in turn, the weights are 
utilized for the computation of ANN. A special transformation 
from linear space techniques is also employed in the process 
of the conversion of the Stochastic matrices. The ANN is run 
with different levels of iterations and the results are compared 
for the effectiveness of the proposed methods. The ANN 
that is being offered in this study is solved using Python 
programming, and the method of employing MAGDM in 
conjunction with ANN is new to the domains of artificial 
intelligence and decision support systems Atanassov, K., 
(2013), Atanassov, K., (2023), Fullér, R. (2000), Hájek, P., & Olej, 
V. (2015), Heaton, J. (2015), Kuo, R.J., & Cheng, W. C. (2019), 
Leonishiya, A, (2023), Leonishiya, A., (2023), Robinson, J., 
(2024), Robinson, J., (2024), Zadeh, L.A. (1965), Zhao, J., (2016).  

Markov Chains and Limiting Distribution 
Consider a simple coin-tossing experiment repeated a 
number of times. The possible outcomes at each trial are 
two: head with probability, say p and tail with probability 
q, 1p q+ = . Let us denote head by 1 and tail by 0 and the 
random variable denoting the result of the nth toss by nX . 
Then for n=1,2,… ( ) { }Pr 1 ,   Pr 0 .n nX p X q= = = =
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Thus we have a sequence of the random variables 1 2, ,....X X . 
The trials are independent and the result of the nth trial does 
not depend in any way on the previous trials numbered 

( )1,2,..., 1 .n − The random variables are independent. 
Consider now the random variable given by the partial sum

1 ...n nS X X= + + . The sum nS  gives the accumulated number 
of heads in the first n trials and its possible values are 0,1,..., n .  
We have 1 1n n nS S X+ += + . Given that ( )0,1,...,jS j j n= = , the 
random variables 1nS +  can assume only two possible values: 

1nS j+ =  with probability q and 1 1nS j+ = + with probability 
p; these probabilities are not at all affected by the values 
of the variables 1 1,..., .nS S −  Thus { }1Pr |n nS j S j p+ = = = ; 

{ }1Pr |n nS j S j q+ = = =
We have here an example of a Markov chain, a case 

of simple dependence that the outcome of ( )1n + th trial 
depends directly on that of nth trial and only on it. The 
conditional probability of 1nS +  given nS  depends on the 
value of nS  and the manner in which the value of nS  was 
reached is of no consequence.

Definition 1
He stochastic process is { }, 0,1, 2,...nX n = is called a Markov 
chain, if, for 1 1, , ,..., nj k j j N− ∈ (one any subset of I),

{ }1 2 1 0 1Pr | , ,...,n n n nX k X j X j X j− − −= = = =

{ }1Pr |n nX k X j−= = =  jkp=  (1)

Whenever the first member is defined.
The outcomes are called the states of the Markov 

chain; if nX has the outcome j ( ). .i e N j= , the process is 
said to at the state j at nth trial. To a pair of state ( ),j k at the 
two successive trials (say, nth and ( )1n + st trials) there is an 
associated conditional probability jkp . It is the probability 
of transition from the state j at nth trial to the state k at ( )1n +
st trial. The transition probabilities jkp  are basic to the study 
of the study of the structure of the Markov chain.

The transition probability may or may not be independent 
of n. If the transition probability jkp  is independent of n, the 
Markov chain is said to be homogeneous (or to have 
stationary transition probabilities). If it is dependent on n, the 
chain is said to be non-homogeneous. Here we shall confine 
to homogeneous chains. The transition probability jkp refer 
to the states ( ),j k  at two successive trials (say, nth and ( )1n +
st trial); the transition is one-step and jkp  is called one-step 
(or unit step) transition probability. In the more general 
case, we are concerned with the pair of states ( ),j k  at two 
non-successive trials, say, state j at the nth trial and state k at 
the  ( )n m+ th trial. The corresponding transition probability 
is then called m-step transition probability denoted by ( )m

jkp
, i.e. ( ) { }Pr | .m

jk n m np X k X j+= = =

Transition Matrix (or Matrix of Transition 
Probabilities)
The transition probabilities jkp  satisfy 0,   1jk jk

k
p p≥ =∑  for 

all  j.                                                                                                      (2)

These probabilities may be matrix form
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p p p
p p p
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 =
 
 
 





   

   

   (3)

This is called the transition probability matrix or matrix of 
transition probabilities of the Markov chain. P is a stochastic 
matrix i.e. a square matrix with non-negative elements and 
unit row sums.

Stability of a Markov System

Definition
Stationary Distribution
Consider a Markov Chain with transition probabilities  
and the transition probability matrix . A probability 
distribution { } is called stationary (or invariant) for the given 
chain if  such that , 

Now the decisive issue is whether a Markov system, 
regardless of the initial state j, reaches a steady or stable state 
after a large number of transitions or moves. Hence, under 
what conditions, if any, as n tends to infinity,  tends to 
a limit  independent of the initial state j (i.e.,  tends to 
a stochastic matrix whose rows are identical). This property 
of limiting the distribution of   being independent of 
the initial state j is called Ergodicity. When such a limit exists, 
the probabilities settle down and become stable. Then, the 
system shows some long-run regularity properties. This 
mentioned property of the stability of a Markov system is 
applied to the available decision matrices in order to derive 
the weights for the input vectors in the artificial neural 
network algorithm. 

Magdm Problem Solving Using Stochastic Ann With 
Intuitionistic Fuzzy Sets

Pseudo-code for solving Stochastic-ANN
Cn : n Matrix itemset of size k x m

Input {Intuitionistic Fuzzy Decision Matrices}
An = {Collection of n Matrices of size k };
//* Defuzzyfication Phase*//
Compute {Defuzzify the decision matrices using median 

membership operator, }

For (n=1; An ≠∅; n++) do begin
//* Stochastic matrix generation Phase*//
Generate {Stochastic matrices by normalizing the 

Defuzzified matrices, n}
//* N is the collection of Individual Preference IF-Decision 

Matrices *//
Generate {Moderated decision matrices, n}
Generate {Convert the stochastic matrices into symmetric 

matrices using , n}
While   do {Compute the Eigen values and Eigen 

vectors of n}
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Generate {Input for ANN with the collection of Eigen values, }
Generate {Target output for the Net using 

 }

//* Weight vector generation Phase*//
Generate {weight vector using limiting distribution of 

Markov chain for n, πp = π; }
//* Learning Phase*//
Generate {Weight Matrix by IF-Delta Rule}

,  , (netn)= 
,

Update weights for next step {Wn+1 = c (dn-On) (netn)
Xn+Wn}

Continue the weight updation until the error is 
minimized to a desired level

//*Activation function*//
Fix {The Threshold Value-Binary Step Function}
While Activated values ≥  Threshold do
Generate {Binary Matrix for final Decision with values 

exceeding the Threshold }
Output{Best Alternative(s) to be chosen}
{The final decision variable can be converted into crisp 

variable and computations can be performed}.
End 

Numerical Illustration
Consider the numerical illustration with the following 
decision matrices as in [10]. The problem is to identify the 
best alternative out of the available alternatives (5-row wise). 
The computations are presented as below: 

The decision matrices are given as follows, where one 
additional zero column is added to every matrix in order 
to transform the matrices into square matrices and then 
defuzzyfying the entries of the decision matrices using median 
membership operator = , we obtain the following:

1 = ;

2 = ;

3 = .

Normalize the values into entries that will form 
Stochastic matrices.

Normalized matrices are given as follows:

1=  

2=  

3=  

To get the row sum equal to one, distribute the values of 
the maximum entries with the entries with the least values. 
Now, we get the moderated values for the decision matrix 
as follows: 

1=  

2=  

3=  

Convert the stochastic matrices into symmetric matrices 
using , and find the Eigen values of individual column 
matrices.

For 1, 2, 3 we have the transformed symmetric 
matrices as follows:

1 =
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2 =

3 =

Using these corresponding symmetric matrices 1, 

2, 3, find the Eigen values and Eigen vectors 
separately as follows:

Eigen Values and vectors for  1:

;

;

;

.

Eigen Values for  2:

;

; 

;

;

.
Eigen Values for 3:

;

; 

;

.

Consider the input values as ,  corresponding to 
the eigenvalues of 1, 2, 3 respectively:

 = ;      = ;      = .

These above three column matrices will represent the 
input vectors respectively for the artificial neural network. 
Now, in this work is proposed a novel formula to find the d 
values for the target output:

.  (4)

For the input vector  = ,
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,

,

,

 0.548187871,

,

 0.545657398.
Apply the Learning rule (Delta learning Rule) for the 

defuzzified individual column matrices to obtain the weight 
vector. Consider the stochastic matrices  1, 2, 3,  
which will be utilized for the weight determination for 
ANN. To compute the weights, we can calculate the limiting 
distribution for the corresponding stochastic matrices as 
follows:

Utilize the system of linear equations:
πp = π,  (5)

.  (6)

Such that, for 1 we have the system of equations as 
follows:
0.239130 +0.282608 +0.152173 +0.108698 +0.217391

=
0.222222 +0.238095 +0.258095 +0.142858

+0.158730 =
0.206896 +0.189655 +0.206896 +0.224137

+0.172416 =
0.296292 +0.240746 +0.166666 +0.111111

+0.185185 =
0.229508 +0.180327 +0.229508 +0.196721

+0.163936 =
+ + + +  = 1

For 2 we have the system of equations as follows:
0.239130 +0.282608 +0.152173 +0.108698 +0.217391

=
0.222222 +0.238095 +0.258095 +0.142858

+0.158730 =
0.206896 +0.189655 +0.206896 +0.224137

+0.172416 =
0.210909 +0.207274 +0.163636 +0.236363

+0.181818 =
0.222222 +0.174603 +0.253968 +0.190476

+0.158731 =
+ + + + =1

For 3 we have the system of equations as follows:
0.236842 +0.289473 +0.131578 +0.078950 +0.263157

=
0.218181 +0.236363 +0.236363 +0.127275

+0.181818 =

0.200000 +0.180000 +0.200000 +0.220000
+0.200000 =

0.319148 +0.234042 +0.148936 +0.085109
+0.212765 =

0.218181 +0.163638 +0.254545 +0.181818
+0.181818 =

+ + + + =1

These are stochastic equations of the corresponding 
three matrices 1, 2, 3. 

Solving the above set of equations separately using the 
TORA package, we get the solutions that yield the stationary 
and limiting distribution as follows:

From the weight calculation, we take the weight of the 
stochastic matrix of 1, since the solution of the other two 
systems yields the solution as (0.2  0.2  0.2  0.2  0.2), which 
may not be considered for the consensus process with all 
5 equal values.

Hence, the weight vector is: W=  (from 1).

Hence  

By applying Delta learning rule to these weights, we get: 

When  = ,

  = ( )

 

(net1) = 

= 

=  

= 0.4546993877

W2 = c (d1-O1) (net1)X1+W1
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= 

      + 

= 

 

+ 

=  + 

  

  
 

 = 

( ) =  

=  [ ]

= 0.4931170612

 

=   

 + 

 + 

=  + 

= 

    

    

= 0.229792003

 = 

( ) = 

=0.493457112
= c (  – ) ( ) +

+

 

 +

 

Step 8
Utilize the activation function and identify the best values. 
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The computations and comparisons are recorded in the 
following Tables 1 and 2.

Conclusion
In this work, we have presented the MAGDM problems 
based on solving them by stochastic artificial neural 
network methodologies. A combination of some linear 
space techniques and stochastic models with Markov chain 
applications has been incorporated in deriving the input for 
the ANN as well as the weight determination for the same. 
Finally, a numerical illustration has been given with three 
different instances of ranking at different iteration levels 
to show the developed method. The comparison could be 
extended with a greater number of iterations, which would 
be out of scope for the current problem of decision-making. 
A new Algorithm was proposed for the ANN method of 
solving the MAGDM problems. The new method proves 
to be more effective than the previous methods since it 
uses eigenvalues for input creation. Methods based on 
orthonormal and orthogonal vectors are also employed to 
create the input for ANN. Numerical illustrations were given 
for the effectiveness of the proposed methods.
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