An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.70Keywords:
Gaussian mixture model, Min-max decision model, Cardiovascular disease, Photoplethysmography, Singular value decomposition.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As per a latest study, coronary artery disease and hemorrhagic stroke are the predominant factors contributing to over 80% of cardiovascular diseases (CVDs). To reduce the mortality rate due to CVDs, researches are proposing the techniques for early detection of these CVDs. For the preliminary investigation on cardiovascular disease Photoplethysmography (PPG) can be used. Using PPG signals, it is possible to infer the risk levels like CVD with low risk, CVD with medium risk and respiratory disorder. To classify the risk levels of CVD, a model incorporating Gaussian mixture model (GMM) classifier with min-max decision model has been implemented. The proposed model resulted in better performance than existing classifiers like Logistic regression-GMM (LR-GMM), Detrend fluctuation analysis (DFA) and Cuckoo search algorithm (CSA) using min-max model. Based on the results GMM reflects a peak 95.9% classification accuracy with minimal false alarm of 7.1% and 0.99% miss classification when compared to other post classifiers.Abstract
How to Cite
Downloads
Similar Articles
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Karan Berry, Shiv Kumar, Exploring the mediating role of gastronomic experience in tourist satisfaction: A multigroup analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Goutam Mandal, Baibaswata Bhattacharjee, Biosynthesis of ZnO nanoparticles using the young fruit of Borassus flabellifer: Characterization and photocatalytic removal of biohazardous safranin-O dye using solar irradiation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Pathak, Shweta Kumari, An investigation on the impact of vedic mathematics on higher secondary school student’s ability to expand mathematical units , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.