An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.70Keywords:
Gaussian mixture model, Min-max decision model, Cardiovascular disease, Photoplethysmography, Singular value decomposition.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As per a latest study, coronary artery disease and hemorrhagic stroke are the predominant factors contributing to over 80% of cardiovascular diseases (CVDs). To reduce the mortality rate due to CVDs, researches are proposing the techniques for early detection of these CVDs. For the preliminary investigation on cardiovascular disease Photoplethysmography (PPG) can be used. Using PPG signals, it is possible to infer the risk levels like CVD with low risk, CVD with medium risk and respiratory disorder. To classify the risk levels of CVD, a model incorporating Gaussian mixture model (GMM) classifier with min-max decision model has been implemented. The proposed model resulted in better performance than existing classifiers like Logistic regression-GMM (LR-GMM), Detrend fluctuation analysis (DFA) and Cuckoo search algorithm (CSA) using min-max model. Based on the results GMM reflects a peak 95.9% classification accuracy with minimal false alarm of 7.1% and 0.99% miss classification when compared to other post classifiers.Abstract
How to Cite
Downloads
Similar Articles
- K. P. SINGH, NIDHI TRIPATHI, ANTIPSYCHOTIC MEDICATION DURING PREGNANCY AND POSSIBLE BIRTH DEFECTS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Vipul Sundavadara, Riddhi SanghvI, Behavioral finance: A systematic literature review , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Divya Goyal, Aksh Chahal, Aashi Bhatnagar, Vishakha, Sheetal Malhan, Vishwajeet Trivedi, Comparison of the acute metabolic and cardiovascular effects of electrical stimulation and voluntary exercise , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Meera Yadav, F. D. Yadav, Effect of TLCV on Metabolic Parameter and Yield of Tomato , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Renuka Thapliyal, Can Shimla be fitted into the compact city model? , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.