Machine learning approaches for predicting species interactions in dynamic ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.69Keywords:
Machine learning, Species interactions, Dynamic ecosystems, Predictive modeling, Comparative analysis, Performance evaluation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper explores the application of machine learning (ML) techniques in predicting species interactions within dynamic ecosystems. Using a multi-faceted approach, we investigate the effectiveness of various ML algorithms in analyzing species interaction strengths through an example dataset. Visualizations, including bar, line, and pie charts, depict the distribution and patterns of species interactions, providing valuable insights into ecological dynamics. Additionally, a comparative analysis examines the data requirements and characteristics of four ML approaches: Generalized Linear Models (GLM), Classification and Regression Trees (CART), Artificial Neural Networks (ANN), and Evolutionary Algorithms (EA). By synthesizing information from previous studies, we elucidate the strengths and limitations of each ML approach in predicting species interactions. Furthermore, a performance evaluation of these approaches highlights their predictive capabilities across various metrics, including accuracy, precision, recall, and F1 score. Our research methodology provides a comprehensive understanding of the application of ML techniques in ecological research, laying the groundwork for future studies aiming to predict species interactions and advance our understanding of dynamic ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- Neetu Singh, Ravindra Kumar Singh, Acute Toxicity of Sumithion Insecticide on Freshwater Catfish, Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Deepa, Anju Panwar, Yougesh Kumar, Redescription of Procamallanus (Spirocamallanus) mysti (Karve, 1952) Infecting Freshwater Fishes from Muzaffarnagar, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Showkat Ahmad Shah, Netsanet Gizaw, Impact of selected macroeconomic variables on economic growth in Ethiopia: A time series analysis , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ishfaq Ahmad Malik, Showkat Ahmad Shah, Economic impact of COVID-19 on Ethiopian micro, small, and medium enterprises and policy measures , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Brij M. Sharma, Parul Singhal, Neeraj Uniyal, Ram T. Mourya, Jai Sharma, Community based seasonally water quality testing of tributaries of Dehradun , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, Do tax compliance costs mediate the relationship between the complexity of tax structure and fairness perceptions? Evidence from manufacturers , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.