Machine learning approaches for predicting species interactions in dynamic ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.69Keywords:
Machine learning, Species interactions, Dynamic ecosystems, Predictive modeling, Comparative analysis, Performance evaluation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper explores the application of machine learning (ML) techniques in predicting species interactions within dynamic ecosystems. Using a multi-faceted approach, we investigate the effectiveness of various ML algorithms in analyzing species interaction strengths through an example dataset. Visualizations, including bar, line, and pie charts, depict the distribution and patterns of species interactions, providing valuable insights into ecological dynamics. Additionally, a comparative analysis examines the data requirements and characteristics of four ML approaches: Generalized Linear Models (GLM), Classification and Regression Trees (CART), Artificial Neural Networks (ANN), and Evolutionary Algorithms (EA). By synthesizing information from previous studies, we elucidate the strengths and limitations of each ML approach in predicting species interactions. Furthermore, a performance evaluation of these approaches highlights their predictive capabilities across various metrics, including accuracy, precision, recall, and F1 score. Our research methodology provides a comprehensive understanding of the application of ML techniques in ecological research, laying the groundwork for future studies aiming to predict species interactions and advance our understanding of dynamic ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ahmed Mustefa, Ethiopian Voluntary Resettlement Programme-Lesson to Learn , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Punithavathy E, N. Priya, A resilience framework for fault-tolerance in cloud-based microservice applications , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nitin Bhone, Nilesh Diwakar, S. S. Chinchanikar, Multi-response optimization for AISI M7 Hard Turning Using the utility concept , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilay Shukla, Ketan Desai, Study on the right to education with special references to public private partnerships , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 43 44 45 46 47 48 49 50 > >>
You may also start an advanced similarity search for this article.